### APPENDIX F TIER 3 VAPOR INTRUSION ASSESSMENT DATA

REVISED DRAFT REMEDIAL INVESTIGATION REPORT Capital Industries, Inc. 5801 3rd Avenue South Seattle, Washington

Farallon PN: 457-004

### Table 1 Summary of Indoor and Outdoor Air Sampling Results 5801 Third Avenue South (QC and Laser Office) **Capital Industries, Inc.** Seattle, Washington Farallon PN: 457-004

|                                                        |                |                                   | Те                               | etrachloroethe                        | ene                  |                         |                                   | Т                                | richloroethen                         | e                    |                         |                                   | cis-1                            | ,2-dichloroet                         | hene                 |                         |
|--------------------------------------------------------|----------------|-----------------------------------|----------------------------------|---------------------------------------|----------------------|-------------------------|-----------------------------------|----------------------------------|---------------------------------------|----------------------|-------------------------|-----------------------------------|----------------------------------|---------------------------------------|----------------------|-------------------------|
| Indoor Air Sampling Locations                          | Sample<br>Date | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | C <sub>indoor_corr</sub> <sup>1</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | C <sub>indoor_corr</sub> <sup>1</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | C <sub>indoor_corr</sub> <sup>1</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> |
| 5801 3rd Ave South (Capital QC and Laser Office)       | 4/13/2011      | 0.115                             | 0.115                            | 0.000                                 | 0.000                | 0.000                   | 0.046                             | 0.420                            | 0.374                                 | 1.626                | 0.055                   | 0.065                             | 0.070                            | 0.005                                 | -                    | 0.001                   |
| Commercial Indoor Air IPIMAL - Cancer <sup>1</sup>     |                |                                   |                                  | 0.97                                  |                      |                         |                                   |                                  | 0.23                                  |                      |                         |                                   |                                  | -                                     |                      |                         |
| Commercial Indoor Air IPIMAL - Non-cancer <sup>1</sup> |                |                                   |                                  |                                       |                      |                         |                                   |                                  | 6.8                                   |                      |                         |                                   |                                  | 6.8                                   |                      |                         |
|                                                        |                | 0.97                              |                                  |                                       |                      |                         |                                   |                                  | elow the method                       |                      |                         | CCEF = cancer<br>NCCEF = non-c    |                                  | eedance factor<br>ve exceedance fa    | ctor                 |                         |

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in the CCEF and NCCEF totals.

<sup>1</sup>Concentrations in micrograms/cubic meters ( $\mu g/m^3$ )

 $C_{indoor\_corr} = C_{indoor} - C_{outdoor}$ 

Exceedance Factors = Corrected indoor air concentration/IPIMAL CCEF and NCEF values = cumulative total of individual EF values

- IPIMAL = inhalation pathway interim measure action level
- C<sub>outdoor</sub> = Concentration of compound in outdoor air sample
- C<sub>indoor =</sub> Concentration of compound in indoor air sample EF <sub>Cancer</sub> = Cancer exceedance factor
- $EF_{Noncancer} = Noncancer exceedance factor$

# Table 1Summary of Indoor and Outdoor Air Sampling Results5801 Third Avenue South (QC and Laser Office)Capital Industries, Inc.Seattle, WashingtonFarallon PN: 457-004

|                                                        |                |                                   | trans                            | -1,2-dichloroe | ethene                      |                                |                                   |                                  | Vinyl Chlorid | e                    |                         |                                   | 1,1                              | -Dichloroeth  | ene                         |                                |      |       |
|--------------------------------------------------------|----------------|-----------------------------------|----------------------------------|----------------|-----------------------------|--------------------------------|-----------------------------------|----------------------------------|---------------|----------------------|-------------------------|-----------------------------------|----------------------------------|---------------|-----------------------------|--------------------------------|------|-------|
| Indoor Air Sampling Locations                          | Sample<br>Date | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | Cindoor_corr   | <b>EF</b> <sub>Cancer</sub> | <b>EF</b> <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | Cindoor_corr  | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | C indoor_corr | <b>EF</b> <sub>Cancer</sub> | <b>EF</b> <sub>Noncancer</sub> | CCEF | NCCEF |
| 5801 3rd Ave South (Capital QC and Laser Office)       | 4/13/2011      | 0.065                             | 0.070                            | 0.005          | -                           | 0.000                          | 0.022                             | 0.022                            | 0.001         | 0.001                | 0.000                   | 0.034                             | 0.034                            | 0.001         | _                           | 0.000                          | 2    | 0     |
| Commercial Indoor Air IPIMAL - Cancer <sup>1</sup>     |                |                                   |                                  | -              |                             |                                |                                   |                                  | 0.66          |                      |                         |                                   |                                  |               |                             |                                | 10   | 10    |
| Commercial Indoor Air IPIMAL - Non-cancer <sup>1</sup> |                |                                   |                                  | 14             |                             |                                |                                   |                                  | 19            |                      |                         |                                   |                                  | 39            |                             |                                | 10   | 10    |
|                                                        |                | NOTES:                            |                                  |                |                             |                                |                                   |                                  |               |                      |                         |                                   |                                  |               |                             |                                |      |       |

Results in **bold** denote concentrations above the laboratory method reporting limit. Where concentrations are below the method reporting limit, a value one half of the method reporting limit is recorded for calculations herein.

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in the CCEF and NCCEF totals.

<sup>1</sup>Concentrations in micrograms/cubic meters (µg/m<sup>3</sup>)

 $C_{indoor\_corr} = C_{indoor} - C_{outdoor}$ 

Exceedance Factors = Corrected indoor air concentration/IPIMAL

CCEF and NCEF values = cumulative total of individual EF values

CCEF = cancer cumulative exceedance factor

NCCEF = non-cancer cumulative exceedance factor

 $\label{eq:IPIMAL} IPIMAL = inhalation \ pathway \ interim \ measure \ action \ level$ 

 $\mathbf{C}_{\text{outdoor}}\!=\!\mathbf{C} \text{oncentration}$  of compound in outdoor air sample

 $C_{indoor}$  = Concentration of compound in indoor air sample EF <sub>Cancer</sub> = Cancer exceedance factor

EF Noncancer = Noncancer exceedance factor

### Table 1 Summary of Indoor and Outdoor Air Sampling Results 5801 3rd Avenue South (Shipping Office) **Capital Industries, Inc.** Seattle, Washington Farallon PN: 457-004

|                                                        |                                                                                                                       |                                                                                                                                       | Tetrachloroeth                                                                                                                                                        | iene                                                                                 |                                                 |                  | 1         | Frichloroethe | ne       |                         |                              | cis-1,                                                                                           | 2-dichloroeth                                                                              | iene                     |                         |                    | trans-1                                                                                                                  | 2-dichloroe                                                                              | thene                                                                           |                         |                  | ,                    | /inyl Chlorid | e        |                         |                                                               | 1,                                                                                        | 1-Dichloroeth | ene                       |                         |      |       |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------|------------------|-----------|---------------|----------|-------------------------|------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------|-------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------|------------------|----------------------|---------------|----------|-------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------|---------------------------|-------------------------|------|-------|
| Sample<br>Indoor Air Sampling Locations Date           |                                                                                                                       | Cindoor                                                                                                                               | Cindoor_corr                                                                                                                                                          | EFCancer                                                                             | EF <sub>Noncancer</sub>                         | Coutdoor 1       | Cindoor 1 | Cindoor_corr  | EFCancer | EF <sub>Noncancer</sub> | Coutdoor 1                   | Cindoor <sup>1</sup>                                                                             | Cindoor_corr 1                                                                             | EF <sub>Cancer</sub> I   | EF <sub>Noncancer</sub> | Coutdoor 1         | C <sub>indoor</sub> <sup>1</sup>                                                                                         | Cindoor_corr                                                                             | EF <sub>Cancer</sub>                                                            | EF <sub>Noncancer</sub> | Coutdoor 1       | Cindoor <sup>1</sup> | Cindoor_corr  | EFCancer | EF <sub>Noncancer</sub> | Coutdoor 1                                                    | Cindoor 1                                                                                 | Cindoor_corr  | EFCancer                  | EF <sub>Noncancer</sub> | CCEF | NCCEF |
| 5801 3rd Ave South (Capital Shipping Office) 4/13/2011 | 0.10                                                                                                                  | 5 0.110                                                                                                                               | 0.005                                                                                                                                                                 | 0.005                                                                                | 0.000                                           | 0.033            | 0.066     | 0.033         | 0.143    | 0.005                   | 0.060                        | 0.065                                                                                            | 0.005                                                                                      | -                        | 0.001                   | 0.060              | 0.065                                                                                                                    | 0.005                                                                                    | -                                                                               | 0.000                   | 0.020            | 0.021                | 0.001         | 0.001    | 0.000                   | 0.032                                                         | 0.032                                                                                     | 0.001         | -                         | 0.000                   | 0.1  | 0.0   |
| Commercial Indoor Air IPIMAL - Cancer <sup>1</sup>     |                                                                                                                       |                                                                                                                                       | 0.97                                                                                                                                                                  |                                                                                      |                                                 |                  |           | 0.23          |          |                         |                              |                                                                                                  |                                                                                            | •                        |                         |                    |                                                                                                                          | -                                                                                        |                                                                                 |                         |                  |                      | 0.66          |          |                         |                                                               |                                                                                           |               |                           |                         | 10   | 10    |
| Commercial Indoor Air IPIMAL - Non-cancer <sup>1</sup> |                                                                                                                       |                                                                                                                                       | 120                                                                                                                                                                   |                                                                                      |                                                 |                  |           | 6.8           |          |                         |                              |                                                                                                  | 6.8                                                                                        |                          |                         |                    |                                                                                                                          | 14                                                                                       |                                                                                 |                         |                  |                      | 19            |          |                         |                                                               |                                                                                           | 39            |                           |                         | 10   | 10    |
|                                                        | reporting lin<br>Where outdo<br>included in t<br><sup>1</sup> Concentrati<br>C <sub>indoor_corr</sub> =<br>Exceedance | it, a value one<br>or air concentr<br>he CCEF and N<br>ons in microgra<br>C <sub>indoor</sub> - C <sub>outdoo</sub><br>Factors = Corr | tentrations above the<br>half of the method re<br>ations exceed indoor<br>&CCEF totals.<br>ums/cubic meters (µg<br>«<br>ected indoor air con<br>cumulative total of i | eporting limit is n<br>r air concentratior<br>z/m <sup>3</sup> )<br>centration/IPIMA | recorded for calco<br>ns, this results in<br>AL | ulations herein. |           |               |          |                         | C <sub>outdoor</sub> = Conce | ancer cumulative<br>ation pathway in<br>ntration of comp<br>tration of compo<br>er exceedance fa | e exceedance fact<br>tterim measure ac<br>ound in outdoor a<br>ound in indoor air<br>actor | tion level<br>iir sample |                         | reporting limit, a | value one half o<br>ir concentrations<br>CEF and NCCE<br>n micrograms/cu<br>or - C <sub>outdoor</sub><br>ors = Corrected | f the method rep<br>exceed indoor a<br>F totals.<br>bic meters (µg/n<br>indoor air conce | porting limit is re<br>air concentration<br>m <sup>3</sup> )<br>entration/IPIMA |                         | ilations herein. |                      |               |          |                         | NCCEF = non-<br>IPIMAL = inha<br>C <sub>outdoor</sub> = Conce | cancer cumulat<br>dation pathway<br>entration of con<br>ntration of com<br>cer exceedance |               | ction level<br>air sample |                         |      |       |

### Table 4 Summary of Indoor and Outdoor Air Sample Cumulative Exceedance Factors 5807 4th Avenue South - Chinese Restaurant **Capital Industries, Inc.** Seattle, Washington Farallon PN: 457-004

|                                  |                                |                                   | Те                               | etrachloroethe            | ene                  |                                |                                   | Т                    | [richloroethei                        | ne                   |                         |                                   | cis-1                            | ,2-dichloroet                         | hene                 |                         |
|----------------------------------|--------------------------------|-----------------------------------|----------------------------------|---------------------------|----------------------|--------------------------------|-----------------------------------|----------------------|---------------------------------------|----------------------|-------------------------|-----------------------------------|----------------------------------|---------------------------------------|----------------------|-------------------------|
| Indoor Air Sampling<br>Locations | Sample Date                    | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | C <sub>indoor_corr1</sub> | EF <sub>Cancer</sub> | <b>EF</b> <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor1</sub> | C <sub>indoor_corr</sub> <sup>1</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | C <sub>indoor_corr</sub> <sup>1</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> |
| IA-1                             | 2/21/2012                      | 0.11                              | 0.36                             | 0.250                     | 0.258                | 0.002                          | 0.085                             | 0.09                 | 0.005                                 | 0.022                | 0.001                   | 0.065                             | 0.650                            | 0.585                                 | -                    | 0.086                   |
| IA-2                             | 2/21/2012                      | 0.11                              | 0.56                             | 0.450                     | 0.464                | 0.004                          | 0.085                             | 0.09                 | 0.005                                 | 0.022                | 0.001                   | 0.065                             | 0.065                            | 0.000                                 | -                    | 0.000                   |
| <b>Commercial Indoor Air IP</b>  | IMAL - Cancer <sup>1</sup>     |                                   |                                  | 0.97                      |                      |                                |                                   |                      | 0.23                                  |                      |                         |                                   |                                  | -                                     |                      |                         |
| Commercial Indoor Air IP         | IMAL - Non-cancer <sup>1</sup> |                                   |                                  | 120                       |                      |                                |                                   |                      | 6.8                                   |                      |                         |                                   |                                  | 6.8                                   |                      |                         |
|                                  |                                | NOTES                             |                                  |                           |                      |                                |                                   |                      |                                       |                      |                         |                                   |                                  | -<br>6.8                              |                      | _                       |

NOTES:

Where concentrations are below the method reporting limit, a value one-half of the method reporting limit is recorded for calculations herein.

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in the CCEF and NCCEF totals.

<sup>1</sup>Concentrations in micrograms/cubic meter ( $\mu$ g/m3).

CCEF = cancer cumulative exceedance factor  $EF_{Cancer} = Cancer exceedance factor$  $EF_{Noncancer} = Noncancer exceedance factor$ Csoilgas = Concentration of compound in outdoor air sample CCEF and NCEF values = cumulative total of individual EF values Exceedance Factors = Corrected indoor air concentration/IPIMAL IPIMAL = inhalation pathway interim measure action level

### Table 4 Summary of Indoor and Outdoor Air Sample Cumulative Exceedance Factors 5807 4th Avenue South - Chinese Restaurant **Capital Industries, Inc.** Seattle, Washington Farallon PN: 457-004

|                                  |                                |                                   | trans                            | -1,2-dichloroe            | ethene               |                         |                                   | Ţ                                | inyl Chlorid              | e                    |                         |                                   | 1,1                              | -Dichloroethe             | ene                  |                         |      |       |
|----------------------------------|--------------------------------|-----------------------------------|----------------------------------|---------------------------|----------------------|-------------------------|-----------------------------------|----------------------------------|---------------------------|----------------------|-------------------------|-----------------------------------|----------------------------------|---------------------------|----------------------|-------------------------|------|-------|
| Indoor Air Sampling<br>Locations | Sample Date                    | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | C <sub>indoor_corr1</sub> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | C <sub>indoor_corr1</sub> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | C <sub>indoor_corr1</sub> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | CCEF | NCCEF |
| IA-1                             | 2/21/2012                      | 0.320                             | 0.335                            | 0.015                     | -                    | 0.001                   | 0.020                             | 0.021                            | 0.001                     | 0.002                | 0.000                   | 0.032                             | 0.034                            | 0.002                     | -                    | 0.000                   | 0.3  | 0.1   |
| IA-2                             | 2/21/2012                      | 0.320                             | 0.335                            | 0.015                     | -                    | 0.001                   | 0.020                             | 0.021                            | 0.001                     | 0.002                | 0.000                   | 0.032                             | 0.034                            | 0.002                     | -                    | 0.000                   | 0.5  | 0.0   |
| Commercial Indoor Air IP         | IMAL - Cancer <sup>1</sup>     |                                   |                                  | -                         |                      |                         |                                   |                                  | 0.66                      |                      |                         |                                   |                                  |                           |                      |                         | 10   | 10    |
| Commercial Indoor Air IP         | IMAL - Non-cancer <sup>1</sup> |                                   |                                  | 14                        |                      |                         |                                   |                                  | 19                        |                      |                         |                                   |                                  | 39                        |                      |                         | 10   | 10    |

NOTES:

Where concentrations are below the method reporting limit, a value one-half of the method reporting limit is recorded for calculations herein.

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in the CCEF and NCCEF totals.

<sup>1</sup>Concentrations in micrograms/cubic meters (µg/m3)

CCEF = cancer cumulative exceedance factorEF <sub>Cancer</sub> = Cancer exceedance factor  $EF_{Noncancer} = Noncancer exceedance factor$ Csoilgas = Concentration of compound in outdoor air sample CCEF and NCEF values = cumulative total of individual EF values Exceedance Factors = Corrected indoor air concentration/IPIMAL

IPIMAL = inhalation pathway interim measure action level

### Table 4 Summary of Sub-Slab Soil Gas Sample Cumulative Exceedance Factors 5815 4th Avenue South - North Building **Capital Industries, Inc.** Seattle, Washington

Farallon PN: 457-004

|                                              |                        | Te                                | trachloroeth         | iene                    |                                   | Trichloroethe        | ne                      | cis                               | -1,2-dichloroe       | ethene                  | trans                             | -1,2-dichloro        | oethene                 | <u> </u>                          | Vinyl Chlorid               | de                      | 1,1                               | -Dichloroeth         | ene                     |                   |                    |
|----------------------------------------------|------------------------|-----------------------------------|----------------------|-------------------------|-----------------------------------|----------------------|-------------------------|-----------------------------------|----------------------|-------------------------|-----------------------------------|----------------------|-------------------------|-----------------------------------|-----------------------------|-------------------------|-----------------------------------|----------------------|-------------------------|-------------------|--------------------|
| Indoor Air Sampling Locations <sup>1,2</sup> | Sample Date            | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | CCEF <sup>1</sup> | NCCEF <sup>2</sup> |
| SS-2 5815N-Warehouse1-041311                 | 4/13/2011              | 840                               | 86.60                | 0.70                    | 1,400                             | 608.70               | 20.59                   | 74                                | -                    | 1.09                    | 0.7                               | -                    | 0.005                   | 0.22                              | 0.033                       | 0.001                   | 0.34                              | -                    | 0.0009                  | 695               | 22                 |
| SS-3 5815N-Warehouse2-041311                 | 4/13/2011              | 4,200                             | 432.99               | 3.50                    | 28,000                            | 12,173.91            | 411.76                  | 21                                | -                    | 0.31                    | 21                                | -                    | 0.15                    | 13.5                              | 2.05                        | 0.071                   | 21                                | -                    | 0.054                   | 12,609            | 416                |
| Commercial Sub-Slab Soil Gas IPIMAL - Ca     | ancer <sup>3</sup>     |                                   | 9.7                  |                         |                                   | 2.3                  |                         |                                   | -                    |                         |                                   | -                    |                         |                                   | 6.6                         |                         |                                   |                      |                         |                   |                    |
| Commercial Sub-Slab Soil Gas IPIMAL - No     | on-cancer <sup>3</sup> |                                   | 1,200                |                         |                                   | 68                   |                         |                                   | 68                   |                         |                                   | 140                  |                         |                                   | 190                         |                         |                                   | 390                  |                         | 10                | 10                 |

NOTES: Where concentrations are below the method reporting limit, a value one-half of the method reporting limit is recorded for calculations herein.

<sup>1</sup>Locations with a CCEF exceeding 10 are presented in bold and indicate that they are proposed for further evaluation. These buildings have a potential vapor intrusion risk due to a cumulative inhalation cancer risk of greater than 1E-05. <sup>2</sup>Locations with a NCCEF exceeding 10 are presented in bold and indicate that they are proposed for further evaluation. These buildings have a potential vapor intrusion risk due to a cumulative noncancer hazard index greater than 1.  $^{3}$ Concentrations in micrograms/cubic meter ( $\mu g/m^{3}$ ).

CCEF = cancer cumulative exceedance factor

EF Cancer = Cancer exceedance factor

EF Noncancer = Noncancer exceedance factor

Csoilgas = Concentration of compound in sub-slab soil gas sample

CCEF and NCEF values = cumulative total of individual EF values

IPIMAL = inhalation pathway interim measure action level

### Table 5 Summary of Indoor and Outdoor Air Sample Cumulative Exceedance Factors 5815 4th Avenue South - North Building **Capital Industries, Inc.** Seattle, Washington Farallon PN: 457-004

|                                  |                               |                                   | Те                               | trachloroethe  | ene                  |                         |                                   | Т                                | richloroether  | ne                   |                                |                                   | cis-1                            | ,2-dichloroet  | hene                 |                                |
|----------------------------------|-------------------------------|-----------------------------------|----------------------------------|----------------|----------------------|-------------------------|-----------------------------------|----------------------------------|----------------|----------------------|--------------------------------|-----------------------------------|----------------------------------|----------------|----------------------|--------------------------------|
| Indoor Air Sampling<br>Locations | Sample Date                   | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | Cindoor_corr 3 | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | Cindoor_corr 3 | EF <sub>Cancer</sub> | <b>EF</b> <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | Cindoor_corr 3 | EF <sub>Cancer</sub> | <b>EF</b> <sub>Noncancer</sub> |
| IA-3                             | 2/21/2012                     | 0.11                              | 1.50                             | 1.39           | 1.43                 | 0.012                   | 0.085                             | 4.40                             | 4.32           | 18.76                | 0.63                           | 0.065                             | 0.98                             | 0.92           | -                    | 0.13                           |
| IA-4                             | 2/21/2012                     | 0.11                              | 0.60                             | 0.49           | 0.51                 | 0.004                   | 0.085                             | 1.90                             | 1.82           | 7.89                 | 0.27                           | 0.065                             | 0.32                             | 0.26           | -                    | 0.04                           |
| Commercial Indoor Air IP         | MAL - Cancer <sup>3</sup>     |                                   |                                  | 0.97           |                      |                         |                                   |                                  | 0.23           |                      |                                |                                   |                                  | -              |                      |                                |
| Commercial Indoor Air IP         | MAL - Non-cancer <sup>3</sup> |                                   |                                  | 120            |                      |                         |                                   |                                  | 6.8            |                      |                                |                                   |                                  | 6.8            |                      |                                |

NOTES:

Where concentrations are below the method reporting limit, a value one-half of the method reporting limit is recorded for calculations herein.

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in the CCEF and NCCEF totals.

<sup>1</sup>Samples with a CCEF exceeding 10 are presented in *bold* and indicate a potential cumulative inhalation cancer risk due to vapor intrusion greater than 1E-05.

<sup>2</sup>Samples with a NCCEF exceeding 10 are presented in *bold* and indicate a potential cumulative risk due to vapor intrusion with a hazard index greater than 1.

<sup>3</sup>Concentrations in micrograms/cubic meter (µg/m<sup>3</sup>)

 $EF_{Cancer} = Cancer exceedance factor$ EF <sub>Noncancer</sub> = Noncancer exceedance factor C<sub>outdoor</sub> = Concentration of compound in outdoor air sample C<sub>indoor</sub> = Concentration of compound in indoor air sample  $C_{indoor\_corr} = C_{indoor} - C_{outdoor}$ CCEF and NCEF values = cumulative total of individual EF values

Exceedance Factors = Corrected indoor air concentration/IPIMAL IPIMAL = inhalation pathway interim measure action level NCCEF = non-cancer cumulative exceedance factor

### Table 5 Summary of Indoor and Outdoor Air Sample Cumulative Exceedance Factors 5815 4th Avenue South - North Building **Capital Industries, Inc.** Seattle, Washington Farallon PN: 457-004

|                                  |                                |                                   | trans                            | 1,2-dichloro   | ethene                      |                         |                                   | Ţ                                | /inyl Chlorid  | e                           |                                |                                   | 1,1                              | -Dichloroeth   | ene                         |                         |                   |                    |
|----------------------------------|--------------------------------|-----------------------------------|----------------------------------|----------------|-----------------------------|-------------------------|-----------------------------------|----------------------------------|----------------|-----------------------------|--------------------------------|-----------------------------------|----------------------------------|----------------|-----------------------------|-------------------------|-------------------|--------------------|
| Indoor Air Sampling<br>Locations | Sample Date                    | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | Cindoor_corr 3 | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | Cindoor_corr 3 | <b>EF</b> <sub>Cancer</sub> | <b>EF</b> <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | Cindoor_corr 3 | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> | CCEF <sup>1</sup> | NCCEF <sup>2</sup> |
| IA-3                             | 2/21/2012                      | 0.32                              | 0.34                             | 0.02           | -                           | 0.001                   | 0.020                             | 0.022                            | 0.002          | 0.002                       | 0.0001                         | 0.032                             | 0.034                            | 0.002          | -                           | 0.00004                 | 20.2              | 0.8                |
| IA-4                             | 2/21/2012                      | 0.32                              | 0.34                             | 0.02           | -                           | 0.001                   | 0.020                             | 0.022                            | 0.002          | 0.003                       | 0.0001                         | 0.032                             | 0.034                            | 0.002          | -                           | 0.0001                  | 8.4               | 0.3                |
| Commercial Indoor Air IP         | IMAL - Cancer <sup>3</sup>     |                                   |                                  | -              |                             |                         |                                   |                                  | 0.66           |                             |                                |                                   |                                  |                |                             |                         | 10                | 10                 |
| Commercial Indoor Air IP         | IMAL - Non-cancer <sup>3</sup> |                                   |                                  | 14             |                             |                         |                                   |                                  | 19             |                             |                                |                                   |                                  | 39             |                             |                         | 10                | 10                 |

NOTES:

Where concentrations are below the method reporting limit, a value one-half of the method reporting limit is recorded for calculations herein.

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in EF Noncancer exceedance factor the CCEF and NCCEF totals.

<sup>1</sup>Samples with a CCEF exceeding 10 are presented in *bold* and indicate a potential cumulative inhalation cancer risk due to vapor intrusion greater than 1E-05.

<sup>2</sup>Samples with a NCCEF exceeding 10 are presented in *bold* and indicate a potential cumulative risk due to vapor intrusion with a hazard index greater than 1.

<sup>3</sup>Concentrations in micrograms/cubic meter (µg/m<sup>3</sup>)

CCEF = cancer cumulative exceedance factor  $EF_{Cancer} = Cancer$  exceedance factor C<sub>outdoor</sub> = Concentration of compound in outdoor air sample C<sub>indoor</sub> = Concentration of compound in indoor air sample  $C_{indoor\_corr} = C_{indoor} - C_{outdoor}$ CCEF and NCEF values = cumulative total of individual EF values Exceedance Factors = Corrected indoor air concentration/IPIMAL

NCCEF = non-cancer cumulative exceedance factor

IPIMAL = inhalation pathway interim measure action level

### Table 4 Summary of Sub-Slab Soil Gas Sample Cumulative Exceedance Factors 5815 4th Avenue South - South Building Capital Industries, Inc. Seattle, Washington Farallon PN: 457-004

|                                              |                       | Te                   | trachloroeth         | iene                    |                      | Trichloroethe        | ne                      | cis                  | -1,2-dichloroe       | ethene                  | trans                | s-1,2-dichloro       | pethene                 | ,                    | Vinyl Chlorid        | le                      | 1,1                  | -Dichloroeth         | iene                    |                   |                    |
|----------------------------------------------|-----------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|-------------------------|-------------------|--------------------|
| Indoor Air Sampling Locations <sup>1,2</sup> | Sample Date           | C <sub>soilgas</sub> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | CCEF <sup>1</sup> | NCCEF <sup>2</sup> |
| SS-4                                         | 2/24/2012             | 1,300                | 134.02               | 1.08                    | 1,400                | 608.70               | 20.59                   | 1.80                 | -                    | 0.026                   | 1.8                  | -                    | 0.013                   | 1.15                 | 0.17                 | 0.0061                  | 1.80                 | -                    | 0.0046                  | 742.89            | 21.72              |
| SS-5                                         | 2/24/2012             | 15                   | 1.55                 | 0.01                    | 95                   | 41.30                | 1.40                    | 0.36                 | -                    | 0.005                   | 0.36                 | -                    | 0.003                   | 0.24                 | 0.04                 | 0.0012                  | 0.36                 | -                    | 0.0009                  | 42.89             | 1.42               |
| Commercial Sub-Slab Soil Gas IPIMAL - Car    | ncer <sup>3</sup>     |                      | 9.7                  |                         |                      | 2.3                  |                         |                      | -                    |                         |                      | -                    |                         |                      | 6.6                  |                         |                      |                      |                         |                   |                    |
| Commercial Sub-Slab Soil Gas IPIMAL - Nor    | n-cancer <sup>3</sup> |                      | 1,200                |                         |                      | 68                   |                         |                      | 68                   |                         |                      | 140                  |                         |                      | 190                  |                         |                      | 390                  |                         | 10                | 10                 |

NOTES:

Where concentrations are below the method reporting limit, a value one-half of the method reporting limit is recorded for calculations herein.

<sup>1</sup>Locations with a CCEF exceeding 10 are presented in bold and indicate that they are proposed for further evaluation. These buildings have a potential vapor intrusion risk due to a cumulative inhalation cancer risk of greater than 1E-05.

<sup>2</sup>Locations with a NCCEF exceeding 10 are presented in bold and indicate that they are proposed for further evaluation. These buildings have a potential vapor intrusion risk due to a cumulative noncancer hazard index greater than 1. <sup>3</sup>Concentrations in micrograms/cubic meter (µg/m<sup>3</sup>) CCEF = cancer cumulative exceedance factor

 $EF_{Cancer} = Cancer exceedance factor$ 

 $EF_{Noncancer} = Noncancer$  exceedance factor

 $C_{soilgas} = Concentration of compound in sub-slab soil gas sample$ 

CCEF and NCEF values = cumulative total of individual EF values

 $Exceedance \ Factors = Corrected \ indoor \ air \ concentration/IPIMAL$ 

 $\label{eq:IPIMAL} IPIMAL = inhalation \ pathway \ interim \ measure \ action \ level$ 

### Table 5 Summary of Indoor and Outdoor Air Sample Cumulative Exceedance Factors 5815 4th Avenue South - South Building **Capital Industries, Inc.** Seattle, Washington Farallon PN: 457-004

|                                  |                            |                                   | Те                               | trachloroethe | ene                  |                         |                                   | Т                                | richloroether | ne                   |                         |                                   | cis-1                            | ,2-dichloroet                         | hene                        |                         |
|----------------------------------|----------------------------|-----------------------------------|----------------------------------|---------------|----------------------|-------------------------|-----------------------------------|----------------------------------|---------------|----------------------|-------------------------|-----------------------------------|----------------------------------|---------------------------------------|-----------------------------|-------------------------|
| Indoor Air Sampling<br>Locations | Sample Date                | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | Cindoor_corr  | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | Cindoor_corr  | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | C <sub>indoor_corr</sub> <sup>1</sup> | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> |
| IA-5                             | 2/21/2012                  | 0.11                              | 0.75                             | 0.640         | 0.660                | 0.005                   | 0.085                             | 0.42                             | 0.335         | 1.457                | 0.049                   | 0.065                             | 0.065                            | 0.000                                 | -                           | 0.000                   |
| IA-6                             | 2/21/2012                  | 0.11                              | 0.92                             | 0.810         | 0.835                | 0.007                   | 0.085                             | 0.57                             | 0.485         | 2.109                | 0.071                   | 0.065                             | 0.065                            | 0.000                                 | -                           | 0.000                   |
| Commercial Indoor Air IP         | IMAL - Cancer <sup>1</sup> |                                   |                                  | 0.97          |                      |                         |                                   |                                  | 0.23          |                      |                         |                                   |                                  | -                                     |                             |                         |
| Commercial Indoor Air IP         |                            | Nome                              |                                  | 120           |                      |                         |                                   |                                  | 6.8           |                      |                         |                                   |                                  | 6.8                                   |                             |                         |

#### NOTES:

Where concentrations are below the method reporting limit, a value one-half of the method reporting limit is recorded for calculations herein.

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in the CCEF and NCCEF totals.

<sup>1</sup>Concentrations in micrograms/cubic meter (µg/m3).

CCEF = cancer cumulative exceedance factor  $EF_{Cancer} = Cancer exceedance factor$ EF Noncancer = Noncancer exceedance factor C<sub>outdoor</sub> = Concentration of compound in outdoor air sample C<sub>indoor</sub> = Concentration of compound in indoor air sample  $C_{indoor\_corr} = C_{indoor} - C_{outdoor}$ CCEF and NCEF values = cumulative total of individual EF values

Exceedance Factors = Corrected indoor air concentration/IPIMAL

NCCEF = non-cancer cumulative exceedance factor

IPIMAL = inhalation pathway interim measure action level

### Table 5 Summary of Indoor and Outdoor Air Sample Cumulative Exceedance Factors 5815 4th Avenue South - South Building **Capital Industries, Inc.** Seattle, Washington Farallon PN: 457-004

|                                  |                                |                                   | trans                            | -1,2-dichloroe             | ethene               |                                |                                   |                                  | Vinyl Chlorid | e                    |                         |                                   | 1,1                              | -Dichloroethe | ene                  |                                |      |       |
|----------------------------------|--------------------------------|-----------------------------------|----------------------------------|----------------------------|----------------------|--------------------------------|-----------------------------------|----------------------------------|---------------|----------------------|-------------------------|-----------------------------------|----------------------------------|---------------|----------------------|--------------------------------|------|-------|
| Indoor Air Sampling<br>Locations | Sample Date                    | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | C <sub>indoor_corr</sub> 1 | EF <sub>Cancer</sub> | <b>EF</b> <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | Cindoor_corr  | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | Cindoor_corr  | EF <sub>Cancer</sub> | <b>EF</b> <sub>Noncancer</sub> | CCEF | NCCEF |
| IA-5                             | 2/21/2012                      | 0.320                             | 0.335                            | 0.015                      | -                    | 0.001                          | 0.020                             | 0.021                            | 0.001         | 0.002                | 0.0001                  | 0.032                             | 0.033                            | 0.001         | -                    | 0.00001                        | 2.1  | 0.1   |
| IA-6                             | 2/21/2012                      | 0.320                             | 0.335                            | 0.015                      | -                    | 0.001                          | 0.020                             | 0.021                            | 0.001         | 0.002                | 0.0001                  | 0.032                             | 0.033                            | 0.001         | -                    | 0.00001                        | 2.9  | 0.1   |
| Commercial Indoor Air IP         | IMAL - Cancer <sup>1</sup>     |                                   |                                  | -                          |                      |                                |                                   |                                  | 0.66          |                      |                         |                                   |                                  |               |                      |                                | 10   | 10    |
| Commercial Indoor Air IP         | IMAL - Non-cancer <sup>1</sup> |                                   |                                  | 14                         |                      |                                |                                   |                                  | 19            |                      |                         |                                   |                                  | 39            |                      |                                | 10   | 10    |
|                                  |                                | NOTES:                            |                                  |                            |                      |                                |                                   |                                  |               |                      |                         |                                   |                                  |               |                      |                                |      |       |

NOTES:

Where concentrations are below the method reporting limit, a value one-half of the method reporting limit is recorded for calculations herein.

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in the CCEF and NCCEF totals.

<sup>1</sup>Concentrations in micrograms/cubic meters (µg/m3).

CCEF = cancer cumulative exceedance factor  $EF_{Cancer} = Cancer$  exceedance factor EF Noncancer = Noncancer exceedance factor C<sub>outdoor</sub> = Concentration of compound in outdoor air sample C<sub>indoor</sub> = Concentration of compound in indoor air sample

 $C_{indoor\_corr} = C_{indoor} - C_{outdoor}$ CCEF and NCEF values = cumulative total of individual EF values Exceedance Factors = Corrected indoor air concentration/IPIMAL IPIMAL = inhalation pathway interim measure action level NCCEF = non-cancer cumulative exceedance factor

### Table 1 Summary of Indoor and Outdoor Air Sampling Results **5914 4th Avenue South (Mobile Crane) Capital Industries, Inc.** Seattle, Washington Farallon PN: 457-004

|                                                        |                |                       | Те                               | etrachloroethe            | ene                         |                         |                                   | Т                                | richloroethen | e                           |                         |            | cis-1                            | ,2-dichloroet | nene                        |                                |
|--------------------------------------------------------|----------------|-----------------------|----------------------------------|---------------------------|-----------------------------|-------------------------|-----------------------------------|----------------------------------|---------------|-----------------------------|-------------------------|------------|----------------------------------|---------------|-----------------------------|--------------------------------|
| Indoor Air Sampling Locations                          | Sample<br>Date | Coutdoor <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | Cindoor_corr <sup>1</sup> | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | Cindoor_corr  | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> | Coutdoor 1 | C <sub>indoor</sub> <sup>1</sup> | Cindoor_corr  | <b>EF</b> <sub>Cancer</sub> | <b>EF</b> <sub>Noncancer</sub> |
| 5914 4th Ave South (Mobile Crane)                      | 4/13/2011      | 0.115                 | 0.120                            | 0.005                     | 0.005                       | 0.000                   | 0.036                             | 2.00                             | 1.964         | 8.539                       | 0.289                   | 0.070      | 0.070                            | 0.000         | -                           | 0.000                          |
| Commercial Indoor Air IPIMAL - Cancer <sup>1</sup>     |                |                       |                                  | 0.97                      |                             |                         |                                   |                                  | 0.23          |                             |                         |            |                                  | -             |                             |                                |
| Commercial Indoor Air IPIMAL - Non-cancer <sup>1</sup> |                |                       |                                  | 120                       |                             |                         |                                   |                                  | 6.8           |                             |                         |            |                                  | 6.8           |                             |                                |

NOTES:

Results in **bold** denote concentrations above the laboratory method reporting limit. Where concentrations are below the method reporting limit, a value one half of the method reporting limit is recorded for calculations herein. Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are

included in the CCEF and NCCEF totals.

<sup>1</sup>Concentrations in micrograms/cubic meters (µg/m<sup>3</sup>)

 $C_{indoor\_corr} = C_{indoor} - C_{outdoor}$ 

Exceedance Factors = Corrected indoor air concentration/IPIMAL

CCEF and NCEF values = cumulative total of individual EF values

CCEF = cancer cumulative exceedance factor

NCCEF = non-cancer cumulative exceedance factor

IPIMAL = inhalation pathway interim measure action level  $C_{outdoor}$  = Concentration of compound in outdoor air sample

C<sub>indoor</sub> = Concentration of compound in indoor air sample

EF <sub>Cancer</sub> = Cancer exceedance factor

EF<sub>Noncancer</sub> = Noncancer exceedance factor

### Table 1 Summary of Indoor and Outdoor Air Sampling Results **5914 4th Avenue South (Mobile Crane) Capital Industries, Inc.** Seattle, Washington

Farallon PN: 457-004

|                                                    |                |                                   | trans                            | -1,2-dichloroe             | ethene               |                                |                                   | Ţ                                | /inyl Chlorid | e                    |                                |                                   | 1,1                              | -Dichloroethe | ene                         |                         |      |       |
|----------------------------------------------------|----------------|-----------------------------------|----------------------------------|----------------------------|----------------------|--------------------------------|-----------------------------------|----------------------------------|---------------|----------------------|--------------------------------|-----------------------------------|----------------------------------|---------------|-----------------------------|-------------------------|------|-------|
| Indoor Air Sampling Locations                      | Sample<br>Date | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | C <sub>indoor_corr</sub> 1 | EF <sub>Cancer</sub> | <b>EF</b> <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | Cindoor_corr  | EF <sub>Cancer</sub> | <b>EF</b> <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>1</sup> | C <sub>indoor</sub> <sup>1</sup> | Cindoor_corr  | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> | CCEF | NCCEF |
| 5914 4th Ave South (Mobile Crane)                  | 4/13/2011      | 0.070                             | 0.070                            | 0.000                      | -                    | 0.000                          | 0.022                             | 0.023                            | 0.001         | 0.001                | 0.000                          | 0.034                             | 0.035                            | 0.001         | -                           | 0.000                   | 9    | 0     |
| Commercial Indoor Air IPIMAL - Cancer <sup>1</sup> |                |                                   |                                  | -                          |                      |                                |                                   |                                  | 0.66          |                      |                                |                                   |                                  |               |                             |                         | 10   | 10    |
| Commercial Indoor Air IPIMAL - Non-cancer          | 1              |                                   |                                  | 14                         |                      |                                |                                   |                                  | 19            |                      |                                |                                   |                                  | 39            |                             |                         | 10   | 10    |

NOTES:

Results in **bold** denote concentrations above the laboratory method reporting limit. Where concentrations are below the method reporting limit, a value one half of the method reporting limit is recorded for calculations herein.

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in the CCEF and NCCEF totals.

<sup>1</sup>Concentrations in micrograms/cubic meters ( $\mu g/m^3$ )

 $C_{indoor\_corr} = C_{indoor} - C_{outdoor}$ 

Exceedance Factors = Corrected indoor air concentration/IPIMAL

CCEF and NCEF values = cumulative total of individual EF values

CCEF = cancer cumulative exceedance factor NCCEF = non-cancer cumulative exceedance factor

IPIMAL = inhalation pathway interim measure action level C<sub>outdoor</sub> = Concentration of compound in outdoor air sample

 $C_{indoor} = Concentration of compound in indoor air sample$ 

EF <sub>Cancer</sub> = Cancer exceedance factor

EF Noncancer = Noncancer exceedance factor

#### Table 3 Summary of Sub-Slab Sampling Results Capital Industries Seattle, Washington Farallon PN: 457-004

|                                                                               |              | Т                                       | etrachloroethe              | ne                      | <u></u>                           | richloroethene              |                         | cis                               | 1,2-dichloroetl             | iene                    | tran                              | s-1,2-dichloroe             | thene                   | V                                 | inyl Chloride        |                         | 1,1                               | -Dichloroet                 | iene                    | CCEF <sup>1</sup> | NCCEF <sup>2</sup> |
|-------------------------------------------------------------------------------|--------------|-----------------------------------------|-----------------------------|-------------------------|-----------------------------------|-----------------------------|-------------------------|-----------------------------------|-----------------------------|-------------------------|-----------------------------------|-----------------------------|-------------------------|-----------------------------------|----------------------|-------------------------|-----------------------------------|-----------------------------|-------------------------|-------------------|--------------------|
| Indoor Air Sampling Locations <sup>1,2</sup>                                  | Sample Date  | C <sub>soilgas</sub> <sup>3</sup>       | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> | colli             |                    |
| 5930 1st Ave South (Beckwith & Kuffel)<br>Subslab1 Sample                     | 4/14/2011    | 14                                      | 1.443                       | 0.0117                  | 1.6                               | 0.696                       | 0.024                   | 0.06                              | -                           | 0.001                   | 0.06                              | -                           | 0.000                   | 0.019                             | 0.003                | 0.0001                  | 0.0295                            | -                           | 0.0001                  | 2.14              | 0.04               |
| 5930 1st Ave South (Beckwith & Kuffel)<br>Subslab2 Sample                     | 4/14/2011    | 1.5                                     | 0.155                       | 0.0013                  | 0.33                              | 0.143                       | 0.005                   | 0.06                              | -                           | 0.001                   | 0.06                              | -                           | 0.000                   | 0.019                             | 0.003                | 0.0001                  | 1                                 | -                           | 0.0026                  | 0.30              | 0.01               |
| 5815 4th Ave South (Pacific Food Systems North<br>Building) Warehouse1 sample | 4/13/2011    | 840                                     | 86.598                      | 0.7000                  | 1,400                             | 608.696                     | 20.588                  | 74                                | -                           | 1.088                   | 0.7                               | -                           | 0.005                   | 0.22                              | 0.033                | 0.0012                  | 0.34                              | -                           | 0.0009                  | 695.33            | 22.38              |
| 5815 4th Ave South (Pacific Food Systems North<br>Building) Warehouse2 sample | 4/13/2011    | 4,200                                   | 432.990                     | 3.5000                  | 28,000                            | 12,173.913                  | 411.765                 | 21                                | -                           | 0.309                   | 21                                | -                           | 0.150                   | 13.5                              | 2.045                | 0.0711                  | 21                                | -                           | 0.0538                  | 12,608.95         | 415.85             |
| Commercial Sub-Slab Soil Gas IPIMAL (µg/m <sup>3</sup> )                      | - Cancer     | , i i i i i i i i i i i i i i i i i i i | 9.7                         |                         | · ·                               | 2.3                         |                         |                                   | -                           |                         |                                   | -                           |                         |                                   | 6.6                  |                         |                                   |                             | •                       | ,                 |                    |
| Commercial Sub-Slab Soil Gas IPIMAL (µg/m <sup>3</sup> )                      | - Non-cancer |                                         | 1,200                       |                         |                                   | 68                          |                         |                                   | 68                          |                         |                                   | 140                         |                         |                                   | 190                  |                         |                                   | 390                         |                         |                   |                    |

<sup>1</sup>Locations with a CCEF exceeding 100 are presented in bold and indicate that they are proposed for further evaluation under Tier 4 of the IPIM approach (Table 1). These buildings have a potential cumulative inhalation cancer risk due to vapor intrusion of 1E-05 or greater.

$$\begin{split} CCEF = & cancer \ cumulative exceedance \ factor \\ IPIM = inhalation \ pathway \ interim \ measure \\ NCCEF = non-cancer \ cumulative \ exceedance \ factor \\ & \mu g/m^3 = micrograms/meters^3 \end{split}$$

 $^3 \text{Concentrations}$  in  $\mu g/m^3$ 

#### Table 2 Summary of Sub-Slab Soil Gas Samples Results 5930 1st Avenue South (Beckwith and Kuffel) Capital Industries, Inc. Seattle, Washington Farallon PN: 457-004

|                                                           |                       | Te                                | etrachloroethe       | ne                      |                                   | Trichloroethene      |                         |                                   | cis-1,2-dichloroet   | hene                    | trans                             | -1,2-dichloroe | thene                   |                                   | Vinyl Chloride       | -                       | 1                                 | ,1-Dichloroethe      | ne                      |                   |                    |
|-----------------------------------------------------------|-----------------------|-----------------------------------|----------------------|-------------------------|-----------------------------------|----------------------|-------------------------|-----------------------------------|----------------------|-------------------------|-----------------------------------|----------------|-------------------------|-----------------------------------|----------------------|-------------------------|-----------------------------------|----------------------|-------------------------|-------------------|--------------------|
| Indoor Air Sampling Locations <sup>1,2</sup>              | Sample Date           | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EFCancer       | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | CCEF <sup>1</sup> | NCCEF <sup>2</sup> |
| 5930 1st Ave South (Beckwith & Kuffel)<br>Subslab1 Sample | 4/14/2011             | 14                                | 1.443                | 0.0117                  | 1.6                               | 0.696                | 0.024                   | 0.06                              | -                    | 0.001                   | 0.06                              | -              | 0.000                   | 0.019                             | 0.003                | 0.0001                  | 0.0295                            | -                    | 0.0001                  | 2.14              | 0.04               |
| 5930 1st Ave South (Beckwith & Kuffel)<br>Subslab2 Sample | 4/14/2011             | 1.5                               | 0.155                | 0.0013                  | 0.33                              | 0.143                | 0.005                   | 0.06                              | -                    | 0.001                   | 0.06                              | -              | 0.000                   | 0.019                             | 0.003                | 0.0001                  | 1.0                               | -                    | 0.0026                  | 0.30              | 0.01               |
| Commercial Sub-Slab Soil Gas IPIMAL - Car                 | icer <sup>3</sup>     |                                   | 9.7                  |                         |                                   | 2.3                  |                         |                                   |                      |                         |                                   |                |                         |                                   | 6.6                  |                         |                                   |                      |                         |                   |                    |
| Commercial Sub-Slab Soil Gas IPIMAL - Nor                 | n-cancer <sup>3</sup> |                                   | 1,200                |                         |                                   | 68                   |                         |                                   | 68                   |                         |                                   | 140            |                         |                                   | 190                  |                         |                                   | 390                  |                         | 10                | 10                 |
|                                                           |                       | NOTES:                            |                      |                         |                                   |                      |                         |                                   |                      |                         | NOTES:                            |                |                         |                                   |                      |                         |                                   |                      |                         |                   |                    |

Results in **bold** denote concentrations above the laboratory method reporting limit. Where concentrations are below the method reporting limit, a value one half of the method reporting limit is recorded for calculations herein.

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in the CCEF and NCCEF totals.

concentrations. These are included in the CCEP and NCCEP totals.
<sup>1</sup>Locations with a CCEF exceeding 10 are presented in *bold* and indicate that they are proposed for further evaluation under Tier 4 of the IPIM approach (Table 1). These buildings have a potential cumulative inhalation cancer risk due to vapor intrusion of IE-05 or greater.
<sup>2</sup>Locations with a NCCEF exceeding 10 are presented in *bold* and indicate that they are proposed for further evaluation under Tier 4 of the IPIM approach (Table 1). These buildings have a potential cumulative inhalation cancer risk due to vapor intrusion of 1 or greater.

<sup>3</sup>Concentrations in micrograms/cubic meters (µg/m<sup>3</sup>)

 $\mathbf{C}_{indoor\_corr} = \mathbf{C}_{indoor} - \mathbf{C}_{outdoor}$ 

Exceedance Factors = Corrected indoor air concentration/IPIMAL

CCEF and NCEF values = cumulative total of individual EF values

CCEF = cancer cumulative exceedance factor NCCEF = non-cancer cumulative exceedance factor IPIMAL = inhalation pathway interim measure action level  $C_{outdoor} {=} Concentration \ of \ compound \ in \ outdoor \ air \ sample$ Cindoor = Concentration of compound in indoor air sample EF Cancer = Cancer exceedance factor EF Noncancer exceedance factor

Results in **bold** denote concentrations above the laboratory method reporting limit. Where concentrations are below the method reporting limit, a value one half of the method reporting limit is recorded for calculations herein.

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in the CCEF and NCCEF totals.

<sup>1</sup>Locations with a CCEF and NCCEF totals.
<sup>1</sup>Locations with a CCEF texceeding 10 are presented in *bold* and indicate that they are proposed for further evaluation under Tier 4 of the IPM approach (Table 1). These buildings have a potential cumulative inhalation cancer risk due to vapor intrusion of 1E-05 or greater.
<sup>2</sup>Locations with a NCCEF exceeding 10 are presented in *bold* and indicate that they are proposed for further evaluation under Tier 4 of the IPM approach (Table 1). These buildings have a potential cumulative inhalation cancer risk due to vapor intrusion of 1 to greater.

 $^3\!Concentrations$  in micrograms/cubic meters (µg/m³)

 $\mathbf{C}_{indoor\_corr} = \mathbf{C}_{indoor} - \mathbf{C}_{outdoor}$ Exceedance Factors = Corrected indoor air concentration/IPIMAL

CCEF and NCEF values = cumulative total of individual EF values

CCEF = cancer cumulative exceedance factor

NCCEF = non-cancer cumulative exceedance factor IPIMAL = inhalation pathway interim measure action level

 $\mathbf{C}_{\text{outdoor}} = \mathbf{C}$ oncentration of compound in outdoor air sample

Cindoor = Concentration of compound in indoor air sample

EF Cancer = Cancer exceedance factor

EF Nonconcer exceedance factor

### Table 3 Summary of Indoor and Outdoor Air Samples Results 5930 1st Avenue South (Beckwith and Kuffel) **Capital Industries, Inc.** Seattle, Washington Farallon PN: 457-004

|                                                        |                      |                                   | Те                               | etrachloroethe  | ene                  |                                |                                   | 1                                | Frichloroether    | ne                          |                         |                                   | cis-1                            | ,2-dichloroet                         | hene                        |                         |
|--------------------------------------------------------|----------------------|-----------------------------------|----------------------------------|-----------------|----------------------|--------------------------------|-----------------------------------|----------------------------------|-------------------|-----------------------------|-------------------------|-----------------------------------|----------------------------------|---------------------------------------|-----------------------------|-------------------------|
| Indoor Air Sampling Locations                          | Sample<br>Date       | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | Cindoor_corr 3  | EF <sub>Cancer</sub> | <b>EF</b> <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | Cindoor_corr 3    | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | C <sub>indoor_corr</sub> <sup>3</sup> | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> |
| 5930 1st. Ave South (Beckwith & Kuffel)                |                      |                                   |                                  | 13.890          | 14.320               | 0.116                          |                                   |                                  |                   |                             |                         |                                   |                                  |                                       |                             |                         |
| Office1 Sample                                         |                      |                                   |                                  |                 |                      |                                | 0.059                             | 0.070                            | 0.011             | 0.048                       | 0.002                   | 0.065                             | 0.060                            | -0.005                                | -                           | -0.001                  |
| 5930 1st. Ave South (Beckwith & Kuffel)                |                      |                                   |                                  |                 |                      |                                |                                   |                                  |                   |                             |                         |                                   |                                  |                                       |                             |                         |
| Office2 Sample                                         | 4/13/2011            | 0.110                             | 13.00                            | 12.890          | 13.289               | 0.107                          | 0.059                             | 0.064                            | 0.005             | 0.022                       | 0.001                   | 0.065                             | 0.070                            | 0.005                                 | -                           | 0.001                   |
| Commercial Indoor Air IPIMAL - Cancer <sup>3</sup>     |                      |                                   |                                  | 0.97            |                      |                                |                                   |                                  | 0.23              |                             |                         |                                   |                                  | -                                     |                             |                         |
| Commercial Indoor Air IPIMAL - Non-cancer <sup>3</sup> | 2                    |                                   |                                  |                 |                      |                                |                                   |                                  | 6.8               |                             |                         |                                   |                                  | 6.8                                   |                             |                         |
|                                                        |                      |                                   |                                  |                 |                      |                                |                                   |                                  |                   |                             |                         |                                   |                                  |                                       |                             |                         |
|                                                        |                      |                                   |                                  | elow the method |                      |                                | CCEF = cancer                     | cumulative exc                   | ceedance factor   |                             |                         |                                   |                                  |                                       |                             |                         |
|                                                        | recorded for calc    | ulations herein.                  |                                  |                 |                      |                                | NCCEF = non-c                     | cancer cumulati                  | ive exceedance fa | ctor                        |                         |                                   |                                  |                                       |                             |                         |
|                                                        | ons, this results in | n negative correct                | ted concentrati                  | ions. These are |                      |                                | IPIMAL = inhal                    | lation pathway                   | interim measure a | action level                |                         |                                   |                                  |                                       |                             |                         |

included in the CCEF and NCCEF totals.

<sup>1</sup>Samples with a CCEF exceeding 10 are presented in *bold* and indicate a potential cumulative inhalation cancer risk due to vapor intrusion greater than 1E-05.

<sup>2</sup>Samples with a NCCEF exceeding 10 are presented in *bold* and indicate a potential cumulative risk due to vapor intrusion with a hazard quotient greater than 1.

<sup>3</sup>Concentrations in micrograms/cubic meters (µg/m<sup>3</sup>)

 $C_{indoor\_corr} = C_{indoor} - C_{outdoor}$ 

Exceedance Factors = Corrected indoor air concentration/IPIMAL

CCEF and NCEF values = cumulative total of individual EF values

C<sub>outdoor</sub> = Concentration of compound in outdoor air sample

C<sub>indoor</sub> = Concentration of compound in indoor air sample

EF <sub>Cancer</sub> = Cancer exceedance factor

 $EF_{Noncancer} = Noncancer exceedance factor$ 

# Table 3Summary of Indoor and Outdoor Air Samples Results5930 1st Avenue South (Beckwith and Kuffel)Capital Industries, Inc.Seattle, WashingtonFarallon PN: 457-004

|                                                        |                |                                   | trans                            | -1,2-dichloroe | ethene               |                         |                                   |                                  | /inyl Chlorid  | le                          |                         |                                   | 1,1                              | 1-Dichloroeth  | ene                         | -                       |                   |                    |
|--------------------------------------------------------|----------------|-----------------------------------|----------------------------------|----------------|----------------------|-------------------------|-----------------------------------|----------------------------------|----------------|-----------------------------|-------------------------|-----------------------------------|----------------------------------|----------------|-----------------------------|-------------------------|-------------------|--------------------|
| Indoor Air Sampling Locations                          | Sample<br>Date | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | Cindoor_corr 3 | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | Cindoor_corr 3 | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | Cindoor_corr 3 | <b>EF</b> <sub>Cancer</sub> | EF <sub>Noncancer</sub> | CCEF <sup>1</sup> | NCCEF <sup>2</sup> |
| 5930 1st. Ave South (Beckwith & Kuffel)                |                |                                   |                                  |                |                      |                         |                                   |                                  |                |                             |                         |                                   |                                  |                |                             |                         | 14                | 0                  |
| Office1 Sample                                         | 4/13/2011      | 0.065                             | 0.060                            | -0.005         | -                    | 0.000                   | 0.021                             | 0.020                            | -0.001         | -0.002                      | 0.000                   | 0.032                             | 0.030                            | -0.002         | -                           | 0.000                   | 14                | 0                  |
| 5930 1st. Ave South (Beckwith & Kuffel)                |                |                                   |                                  |                |                      |                         |                                   |                                  |                |                             |                         |                                   |                                  |                |                             |                         | 13                | 0                  |
| Office2 Sample                                         | 4/13/2011      | 0.065                             | 0.070                            | 0.005          | -                    | 0.000                   | 0.021                             | 0.023                            | 0.002          | 0.003                       | 0.000                   | 0.032                             | 0.035                            | 0.003          | -                           | 0.000                   | 15                | 0                  |
| Commercial Indoor Air IPIMAL - Cancer <sup>3</sup>     |                |                                   |                                  | -              |                      |                         |                                   |                                  | 0.66           |                             |                         |                                   |                                  |                |                             |                         | 10                | 10                 |
| Commercial Indoor Air IPIMAL - Non-cancer <sup>3</sup> | 3              | 14                                |                                  |                |                      | 19                      |                                   |                                  |                |                             | 39                      |                                   |                                  | 10             | 10                          |                         |                   |                    |
|                                                        |                | NOTES:                            |                                  |                |                      |                         |                                   |                                  |                |                             |                         |                                   |                                  |                |                             |                         |                   |                    |

Results in **bold** denote concentrations above the laboratory method reporting limit. Where concentrations are below the method reporting limit, a value one half of the method reporting limit is recorded for calculations herein.

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in the CCEF and NCCEF totals.

<sup>1</sup>Samples with a CCEF exceeding 10 are presented in *bold* and indicate a potential cumulative inhalation cancer risk due to vapor intrusion greater than 1E-05.

 $^{2}$ Samples with a NCCEF exceeding 10 are presented in *bold* and indicate a potential cumulative risk due to vapor intrusion with a hazard quotient greater than 1.

<sup>3</sup>Concentrations in micrograms/cubic meters (µg/m<sup>3</sup>)

 $C_{indoor\_corr} = C_{indoor} - C_{outdoor}$ 

Exceedance Factors = Corrected indoor air concentration/IPIMAL

CCEF and NCEF values = cumulative total of individual EF values

G:\Projects\457 Capital Indust\457004 Plants 2 and 4 RIFS\Reports\Tier 3 VI Reports\5930 Beck&Kuffel\5930 Beck&Kuff Tier 3 VI tbls.xlsx

CCEF = cancer cumulative exceedance factor

NCCEF = non-cancer cumulative exceedance factor

 $\label{eq:IPIMAL} IPIMAL = inhalation \ pathway \ interim \ measure \ action \ level$ 

 $C_{\text{outdoor}}$  = Concentration of compound in outdoor air sample

 $C_{indoor}$  = Concentration of compound in indoor air sample

EF <sub>Cancer</sub> = Cancer exceedance factor

 $EF_{Noncancer} = Noncancer exceedance factor$ 

### Table 4 Summary of Sub-Slab Soil Gas Sample Cumulative Exceedance Factors 5901 4th Avenue South - Gull Industries Building Capital Industries, Inc. Seattle, Washington

Farallon PN: 457-004

|                                              |                        | Tet                               | trachloroeth         | nene                    |                                   | Trichloroethe        | ne                      | cis                               | 1,2-dichloroe        | ethene                  | trans                             | -1,2-dichloro        | oethene                 | V                                 | inyl Chlorid         | le                      | 1,1                               | -Dichloroeth         | ene                     |                   |                    |
|----------------------------------------------|------------------------|-----------------------------------|----------------------|-------------------------|-----------------------------------|----------------------|-------------------------|-----------------------------------|----------------------|-------------------------|-----------------------------------|----------------------|-------------------------|-----------------------------------|----------------------|-------------------------|-----------------------------------|----------------------|-------------------------|-------------------|--------------------|
| Indoor Air Sampling Locations <sup>1,2</sup> | Sample Date            | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>soilgas</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | CCEF <sup>1</sup> | NCCEF <sup>2</sup> |
| Gull Industries SS-1                         | 1/29/2012              | 2,700                             | 278.351              | 2.2500                  | 380                               | 165.217              | 5.588                   | 2.75                              | -                    | 0.040                   | 2.75                              | -                    | 0.020                   | 1.75                              | 0.265                | 0.0092                  | 2.75                              | -                    | 0.0071                  | 443.83            | 7.91               |
| Gull Industries SS-2                         | 1/29/2012              | 2,700                             | 278.351              | 2.2500                  | 4,100                             | 1,782.609            | 60.294                  | 4.05                              | -                    | 0.060                   | 4.05                              | -                    | 0.029                   | 2.60                              | 0.394                | 0.0137                  | 4.05                              | -                    | 0.0104                  | 2,061.35          | 62.66              |
| Commercial Sub-Slab Soil Gas IPIMAL - Ca     | ancer <sup>3</sup>     |                                   | 9.7                  |                         |                                   | 2.3                  |                         |                                   | -                    |                         |                                   | -                    |                         |                                   | 6.6                  |                         |                                   |                      |                         |                   |                    |
| Commercial Sub-Slab Soil Gas IPIMAL - No     | on-cancer <sup>3</sup> |                                   | 1,200                |                         |                                   | 68                   |                         |                                   | 68                   |                         |                                   | 140                  |                         |                                   | 190                  |                         |                                   | 390                  |                         | 10                | 10                 |

NOTES:

Where concentrations are below the method reporting limit, a value one-half of the method reporting limit is recorded for calculations herein.

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in the CCEF and NCCEF totals.

<sup>1</sup>Locations with a CCEF exceeding 10 are presented in bold and indicate that they are proposed for further evaluation under Tier 4 of the IPIM approach (Table 1). These buildings have a potential cumulative inhalation cancer risk due to vapor intrusion of 1E-05 or greater.

<sup>2</sup>Locations with a NCCEF exceeding 10 are presented in bold and indicate that they are proposed for further evaluation under Tier 4 of the IPIM approach (Table 1). These building have a potential cumulative inhalation cancer risk due to vapor intrusion of 1 or greater. <sup>3</sup>Concentrations in micrograms/cubic meter (µg/m<sup>3</sup>) CCEF = cancer cumulative exceedance factor

EF Cancer = Cancer exceedance factor

 $EF_{Noncancer} = Noncancer exceedance factor$ 

 $C_{outdoor}$  = Concentration of compound in outdoor air sample

C<sub>indoor</sub> = Concentration of compound in indoor air sample

 $C_{indoor\_corr} = C_{indoor} - C_{outdoor}$ 

CCEF and NCEF values = cumulative total of individual EF values

Exceedance Factors = Corrected indoor air concentration/IPIMAL

 $\label{eq:IPIMAL} IPIMAL = inhalation \ pathway \ interim \ measure \ action \ level$ 

### Table 5 Summary of Indoor and Outdoor Air Sample Cumulative Exceedance Factors 5901 4th Avenue South - Gull Industries Building **Capital Industries, Inc.** Seattle, Washington Farallon PN: 457-004

|                                                         |                                                          |                                   | Те                               | trachloroethe                         | ene                  |                         |                                   | Т                                | richloroether                         | ie                          |                                |                                   | cis-1                            | ,2-dichloroet  | hene                 |                                |
|---------------------------------------------------------|----------------------------------------------------------|-----------------------------------|----------------------------------|---------------------------------------|----------------------|-------------------------|-----------------------------------|----------------------------------|---------------------------------------|-----------------------------|--------------------------------|-----------------------------------|----------------------------------|----------------|----------------------|--------------------------------|
| Indoor Air Sampling<br>Locations                        | Sample Date                                              | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | C <sub>indoor_corr</sub> <sup>3</sup> | EF <sub>Cancer</sub> | EF <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | C <sub>indoor_corr</sub> <sup>3</sup> | <b>EF</b> <sub>Cancer</sub> | <b>EF</b> <sub>Noncancer</sub> | C <sub>outdoor</sub> <sup>3</sup> | C <sub>indoor</sub> <sup>3</sup> | Cindoor_corr 3 | EF <sub>Cancer</sub> | <b>EF</b> <sub>Noncancer</sub> |
| Gull Industries IA-1                                    | 1/28/2012                                                | 0.085                             | 0.55                             | 0.465                                 | 0.479                | 0.004                   | 0.075                             | 1.400                            | 1.325                                 | 5.761                       | 0.195                          | 0.055                             | 0.060                            | 0.005          | -                    | 0.001                          |
| Gull Industries IA-2                                    | 1/28/2012                                                | 0.085                             | 0.46                             | 0.375                                 | 0.387                | 0.003                   | 0.075                             | 0.200                            | 0.125                                 | 0.543                       | 0.018                          | 0.055                             | 0.060                            | 0.005          | -                    | 0.001                          |
| Gull Industries IA-3                                    | 1/28/2012                                                | 0.085                             | 0.050                            | -0.035                                | -0.036               | 0.000                   | 0.075                             | 0.380                            | 0.305                                 | 1.326                       | 0.045                          | 0.055                             | 0.060                            | 0.005          | -                    | 0.001                          |
| Commercial Indoor Air IPIMAL - Cancer <sup>3</sup> 0.97 |                                                          |                                   |                                  |                                       |                      |                         |                                   |                                  | 0.23                                  |                             |                                |                                   |                                  | -              |                      |                                |
| Commercial Indoor Air IP                                | mmercial Indoor Air IPIMAL - Non-cancer <sup>3</sup> 120 |                                   |                                  |                                       |                      |                         |                                   |                                  | 6.8                                   |                             |                                |                                   |                                  | 6.8            |                      |                                |
| Commercial Indoor Air IP                                | mercial Indoor Air IPIMAL - Non-cancer <sup>3</sup> 120  |                                   |                                  |                                       |                      |                         |                                   |                                  | 0.8                                   |                             |                                |                                   |                                  | 0.8            |                      |                                |

NOTES:

Where concentrations are below the method reporting limit, a value one-half of the method reporting limit is recorded for calculations herein.

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in the CCEF and NCCEF totals.

<sup>1</sup>Samples with a CCEF exceeding 10 are presented in *bold* and indicate a potential cumulative inhalation cancer risk due to vapor intrusion greater than 1E-05.

<sup>2</sup>Samples with a NCCEF exceeding 10 are presented in *bold* and indicate a potential cumulative risk due to vapor intrusion with a hazard quotient greater than 1.

<sup>3</sup>Concentrations in micrograms/cubic meter (µg/m<sup>3</sup>)

CCEF = cancer cumulative exceedance factor EF <sub>Cancer</sub> = Cancer exceedance factor  $EF_{Noncancer} = Noncancer exceedance factor$  $C_{outdoor}$  = Concentration of compound in outdoor air sample. One-half the Laboratory Reporting Limit was used due to compromised sample results.

 $C_{indoor}$  = Concentration of compound in indoor air sample  $C_{indoor \ corr} = C_{indoor} - C_{outdoor}$ CCEF and NCEF values = cumulative total of individual EF values Exceedance Factors = Corrected indoor air concentration/IPIMAL IPIMAL = inhalation pathway interim measure action level

### Table 5 Summary of Indoor and Outdoor Air Sample Cumulative Exceedance Factors 5901 4th Avenue South - Gull Industries Building **Capital Industries, Inc.** Seattle, Washington Farallon PN: 457-004

|                                                                                                                                                                           |                                                                  | trans                                                                                                                               | 1,2-dichloroe                                                                                                                                                                                                                                                      | ethene                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /inyl Chlorid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -Dichloroethe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Date                                                                                                                                                               | C <sub>outdoor</sub> <sup>3</sup>                                | C <sub>indoor</sub> <sup>3</sup>                                                                                                    | C <sub>indoor_corr</sub> <sup>3</sup>                                                                                                                                                                                                                              | <b>EF</b> <sub>Cancer</sub>                                                                                                                                                                                                                                                                                              | <b>EF</b> <sub>Noncancer</sub>                                                                                                                                                                                                        | C <sub>outdoor</sub> <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>indoor</sub> <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cindoor_corr 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>EF</b> <sub>Cancer</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>EF</b> <sub>Noncancer</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C <sub>outdoor</sub> <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>indoor</sub> <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C <sub>indoor_corr</sub> <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EF <sub>Cancer</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>EF</b> <sub>Noncancer</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CCEF <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NCCEF <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1/28/2012                                                                                                                                                                 | 0.028                                                            | 0.305                                                                                                                               | 0.278                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                        | 0.020                                                                                                                                                                                                                                 | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1/28/2012                                                                                                                                                                 | 0.028                                                            | 0.315                                                                                                                               | 0.288                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                        | 0.021                                                                                                                                                                                                                                 | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1/28/2012                                                                                                                                                                 | 0.028                                                            | 0.310                                                                                                                               | 0.283                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                        | 0.020                                                                                                                                                                                                                                 | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ull Industries IA-3         1/28/2012         0.028         0.310         0.283         -           nercial Indoor Air IPIMAL - Cancer <sup>3</sup> -         -         - |                                                                  |                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MAL - Non-cancer <sup>3</sup>                                                                                                                                             |                                                                  |                                                                                                                                     | 14                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                           | 1/28/2012<br>1/28/2012<br>1/28/2012<br>MAL - Cancer <sup>3</sup> | 1/28/2012     0.028       1/28/2012     0.028       1/28/2012     0.028       1/28/2012     0.028       MAL - Cancer <sup>3</sup> 1 | Sample Date         C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> 1/28/2012         0.028         0.305           1/28/2012         0.028         0.315           1/28/2012         0.028         0.310           MAL - Cancer <sup>3</sup> 2 | Sample Date         Coutdoor <sup>3</sup> Cindoor <sup>3</sup> Cindoor_corr <sup>3</sup> 1/28/2012         0.028         0.305         0.278           1/28/2012         0.028         0.315         0.288           1/28/2012         0.028         0.310         0.283           MAL - Cancer <sup>3</sup> -         - | 1/28/2012       0.028       0.305       0.278       -         1/28/2012       0.028       0.315       0.288       -         1/28/2012       0.028       0.310       0.283       -         MAL - Cancer <sup>3</sup> -       -       - | Sample Date         C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> C <sub>indoor_corr</sub> <sup>3</sup> EF <sub>Cancer</sub> EF <sub>Noncancer</sub> 1/28/2012         0.028         0.305         0.278         -         0.020           1/28/2012         0.028         0.315         0.288         -         0.021           1/28/2012         0.028         0.310         0.283         -         0.020           MAL - Cancer <sup>3</sup> - | Sample Date         C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> C <sub>indoor_corr</sub> <sup>3</sup> EF <sub>Cancer</sub> EF <sub>Noncancer</sub> C <sub>outdoor</sub> <sup>3</sup> 1/28/2012         0.028         0.305         0.278         -         0.020         0.018           1/28/2012         0.028         0.315         0.288         -         0.021         0.018           1/28/2012         0.028         0.310         0.283         -         0.020         0.018           1/28/2012         0.028         0.310         0.283         -         0.020         0.018           MAL - Cancer <sup>3</sup> - | Sample Date         C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> EF <sub>cancer</sub> EF <sub>Noncancer</sub> C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> 1/28/2012         0.028         0.305         0.278         -         0.020         0.018         0.020           1/28/2012         0.028         0.315         0.288         -         0.021         0.018         0.020           1/28/2012         0.028         0.310         0.283         -         0.020         0.018         0.020           MAL - Cancer <sup>3</sup> - | Sample Date         C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> EF <sub>cancer</sub> EF <sub>Noncancer</sub> C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> C <sub>indoo</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> C <sub>indoo</sub> <sup>3</sup> | Sample Date         C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> EF <sub>cancer</sub> EF <sub>Noncancer</sub> C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor_corr</sub> <sup>3</sup> EF <sub>cancer</sub> 1/28/2012         0.028         0.305         0.278         -         0.020         0.018         0.020         0.002         0.002           1/28/2012         0.028         0.315         0.288         -         0.021         0.018         0.020         0.002         0.003           1/28/2012         0.028         0.310         0.283         -         0.020         0.018         0.020         0.002         0.003           1/28/2012         0.028         0.310         0.283         -         0.020         0.018         0.020         0.002         0.003           MAL - Cancer <sup>3</sup> -         -         0.020         0.018         0.020         0.002         0.003 | Sample Date         C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor</sub> -3         C <sub>indoor</sub> -corr <sup>3</sup> EF <sub>Cancer</sub> EF <sub>Noncancer</sub> C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor_corr</sub> <sup>3</sup> EF <sub>Cancer</sub> EF <sub>Noncancer</sub> 1/28/2012         0.028         0.305         0.278         -         0.020         0.018         0.020         0.002         0.002         0.002         0.000           1/28/2012         0.028         0.315         0.288         -         0.021         0.018         0.020         0.002         0.003         0.000           1/28/2012         0.028         0.310         0.283         -         0.020         0.018         0.020         0.002         0.003         0.000           1/28/2012         0.028         0.310         0.283         -         0.020         0.018         0.020         0.002         0.003         0.000           MAL - Cancer <sup>3</sup> -         -         -         0.666         -         0.666 | Sample Date         C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>2</sup> EF <sub>cancer</sub> EF <sub>Noncancer</sub> C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> EF <sub>cancer</sub> EF <sub>Noncancer</sub> C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> EF <sub>cancer</sub> EF <sub>Noncancer</sub> C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> EF <sub>Noncancer</sub> C <sub>outdoor</sub> <sup>3</sup> EF <sub>Noncancer</sub> C <sub>outdoor</sub> <sup>3</sup> C <sub>indoor</sub> <sup>3</sup> EF <sub>Cancer</sub> EF <sub>Noncancer</sub> C <sub>outdoor</sub> <sup>3</sup> 1/28/2012         0.028         0.315         0.288         -         0.021         0.018         0.020         0.002         0.003         0.000         0.028           1/28/2012         0.028         0.310         0.283         -         0.020         0.018         0.020         0.002         0.003         0.000         0.028           MAL - Cancer <sup>3</sup> -         -         -         -         0.666         - | Sample Date         Coutdoor <sup>3</sup> Cindoor_corr <sup>3</sup> EF <sub>cancer</sub> EF <sub>Noncancer</sub> Coutdoor <sup>3</sup> Cindoor_corr <sup>3</sup> EF <sub>cancer</sub> EF <sub>Noncancer</sub> Coutdoor <sup>3</sup> Cindoor_corr <sup>3</sup> EF <sub>cancer</sub> EF <sub>Noncancer</sub> Coutdoor <sup>3</sup> Cindoor <sup>3</sup> Cindoo <sup>3</sup> Cindoo <sup>3</sup> Cindoo <sup>3</sup> Cindoo <sup>3</sup> | Sample Date         Coutdoor <sup>3</sup> Cindoor <sup>3</sup> Cindoor <sup>3</sup> EF <sub>cancer</sub> EF <sub>Noncancer</sub> Coutdoor <sup>3</sup> Cindoor <sup>3</sup> Cindoo <sup>3</sup> Cindoo <sup>3</sup> Cin | Sample Date         Coutdoor <sup>3</sup> Cindoor <sup>3</sup> Cindoor <sup>3</sup> EF <sub>cancer</sub> EF <sub>Noncancer</sub> Coutdoor <sup>3</sup> Cindoor <sup>3</sup> Cindoor <sup>3</sup> EF <sub>cancer</sub> EF <sub>Noncancer</sub> EF <sub>Noncancer</sub> Coutdoor <sup>3</sup> EF <sub>cancer</sub> EF <sub>Noncancer</sub> Coutdoor <sup>3</sup> Cindoor <sup>3</sup> EF <sub>cancer</sub> EF <sub>Noncancer</sub> Coutdoor <sup>3</sup> Cindoor <sup>3</sup> Cindoo <sup>3</sup> Cindoo <sup>3</sup> Cindoo <sup>3</sup> Cindoo <sup>3</sup> Cindoo <sup>3</sup> | Sample Date $C_{outdoor}^3$ $C_{indoor}^3$ $C_{indoor}_{orr}^3$ $EF_{cancer}$ $EF_{Noncancer}$ $C_{outdoor}^3$ $C_{indoor}^3$ $C_{indoor}^3$ $EF_{cancer}$ $EF_{Noncancer}$ 1/28/2012         0.028         0.305         0.278         -         0.020         0.018         0.020         0.002         0.002         0.000         0.028         0.031         0.003         -         0.000           1/28/2012         0.028         0.315         0.288         -         0.021         0.018         0.020         0.002         0.003         0.003         0.003         0.004         -         0.000           1/28/2012         0.028         0.310         0.283         -         0.020         0.018         0.020         0.002         0.003         0.000         0.028         0.031         0.004         -         0.000           1/28/2012         0.028         0.310         0.283         -         0.020         0.018         0.020         0.003         0.000         0.028         0.031         0.004         -         0.000           MAL - Cancer <sup>3</sup> -         -         -         -         -         -         - | Sample Date $C_{outdoor}^3$ $C_{indoor}^3$ $C_{indoor_{corr}}^3$ $EF_{Cancer}$ $EF_{Noncancer}$ $C_{outdoor}^3$ $C_{indoor}^3$ $C_{indoor_{corr}}^3$ $EF_{Cancer}$ $EF_{Noncancer}$ $C_{outdoor}^3$ $C_{indoor}^3$ $C_{indoor_{corr}}^3$ $EF_{Cancer}$ $EF_{Noncancer}$ $C_{cort}^3$ $C_{indoor}^3$ $C_{indoor}^3$ $C_{indoor}^3$ $C_{indoor}^3$ $EF_{Cancer}$ $EF_{Noncancer}$ $CCEF^1$ 1/28/2012       0.028       0.305       0.278       -       0.020       0.018       0.020       0.002       0.000       0.028       0.031       0.003       -       0.000       6         1/28/2012       0.028       0.315       0.288       -       0.020       0.018       0.020       0.002       0.003       0.000       0.028       0.031       0.004       -       0.000       1         1/28/2012       0.028       0.310       0.283       -       0.020       0.018       0.020       0.003       0.000       0.028       0.031       0.004       -       0.000       1         MAL - Cancer <sup>3</sup> -       -       -       -       -       -       -       10 |

NOTES:

Where concentrations are below the method reporting limit, a value one-half of the method reporting limit is recorded for calculations herein.

Where outdoor air concentrations exceed indoor air concentrations, this results in negative corrected concentrations. These are included in the CCEF and NCCEF totals.

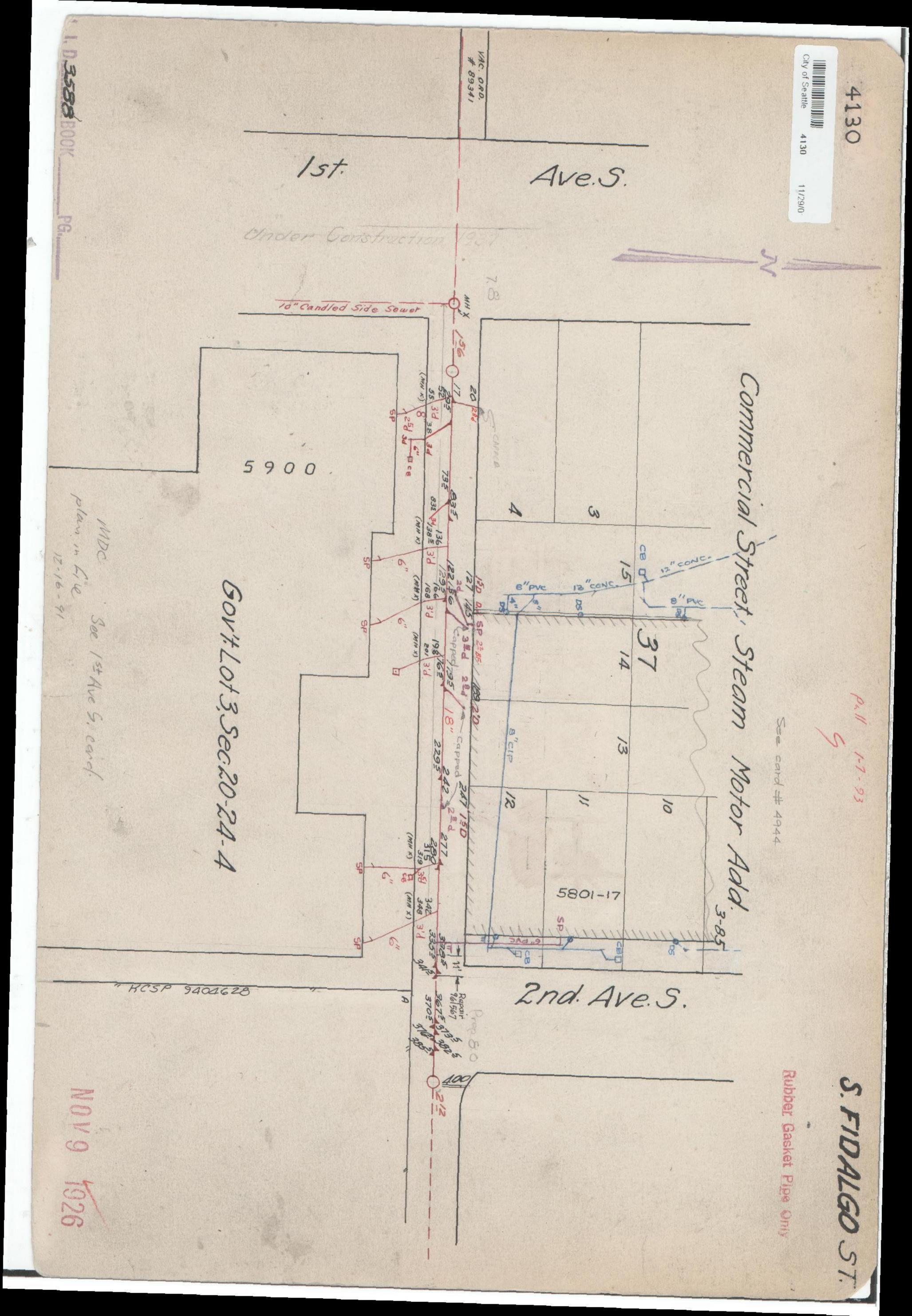
<sup>1</sup>Samples with a CCEF exceeding 10 are presented in *bold* and indicate a potential cumulative inhalation cancer risk due to vapor intrusion greater than 1E-05.

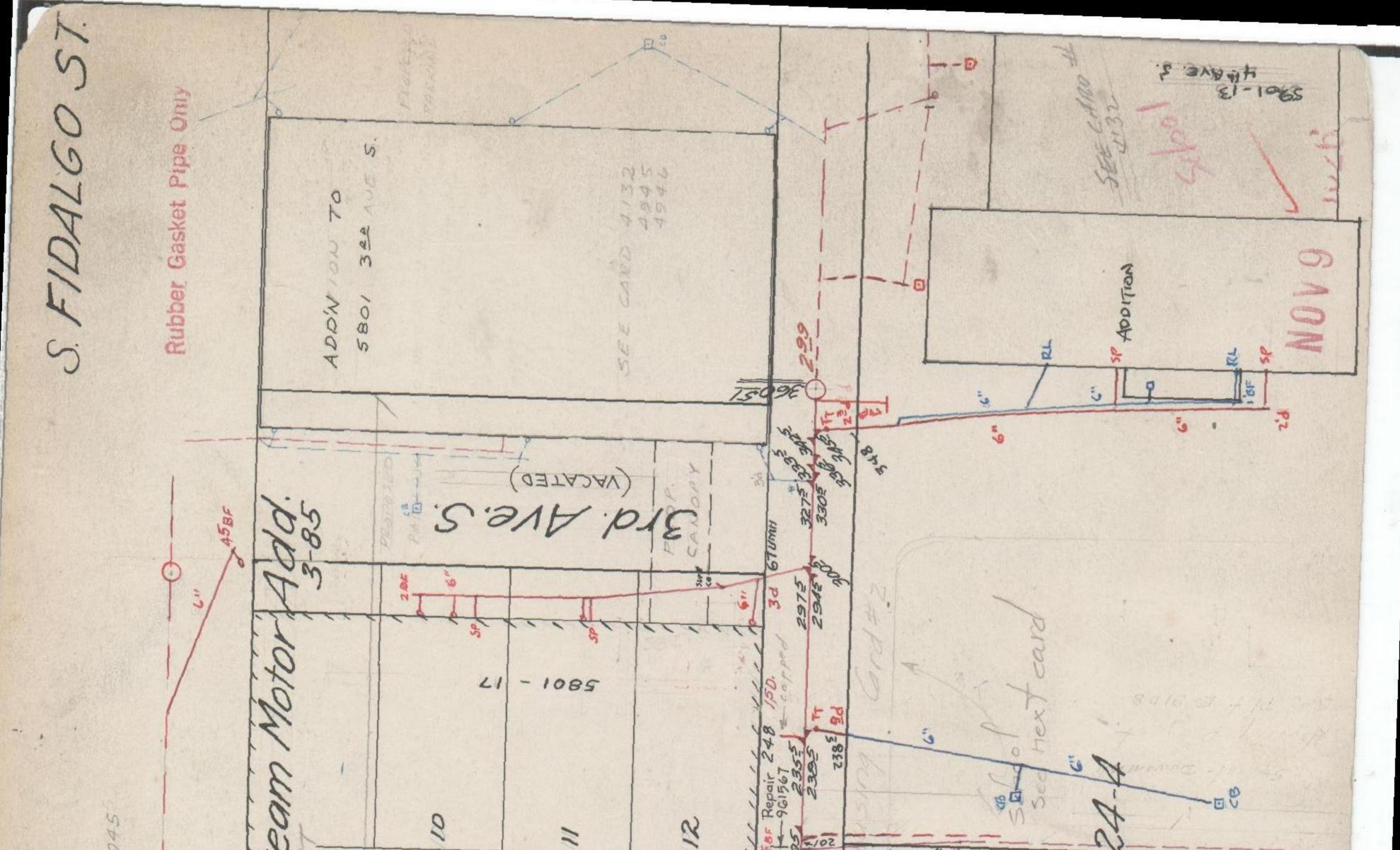
 $^{2}$ Samples with a NCCEF exceeding 10 are presented in **bold** and indicate a potential cumulative risk due to vapor intrusion with a hazard quotient greater than 1.

<sup>3</sup>Concentrations in micrograms/cubic meters (µg/m<sup>3</sup>)

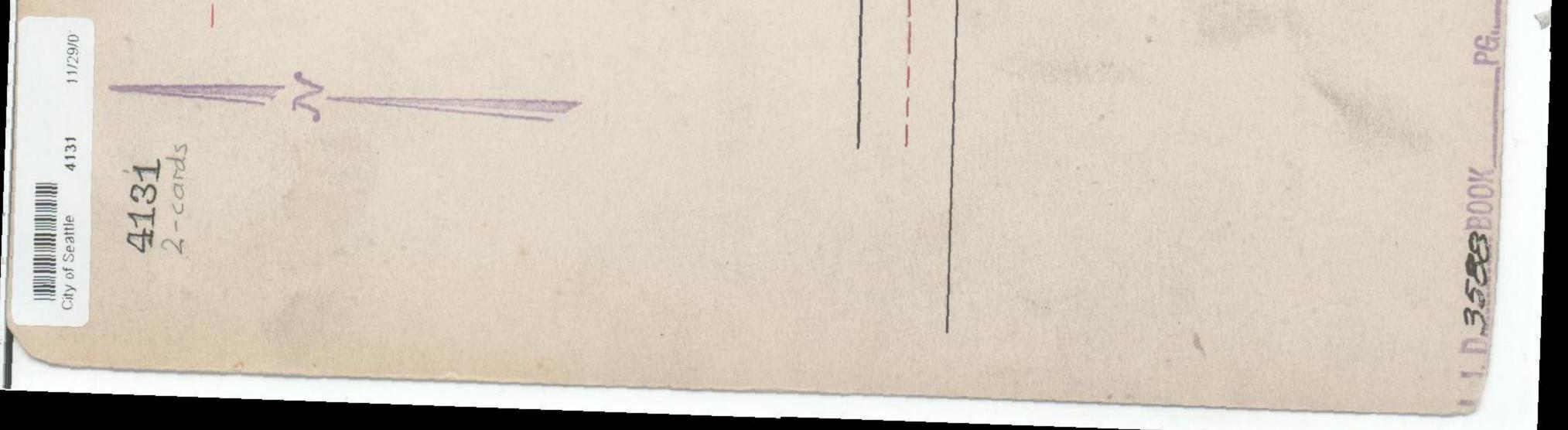
CCEF = cancer cumulative exceedance factor EF <sub>Cancer</sub> = Cancer exceedance factor  $EF_{Noncancer} = Noncancer exceedance factor$ C<sub>outdoor</sub> = Concentration of compound in outdoor air sample. One-half the Laboratory Reporting Limit was used due to compromised sample results.  $C_{indoor} = Concentration of compound in indoor air sample$ 

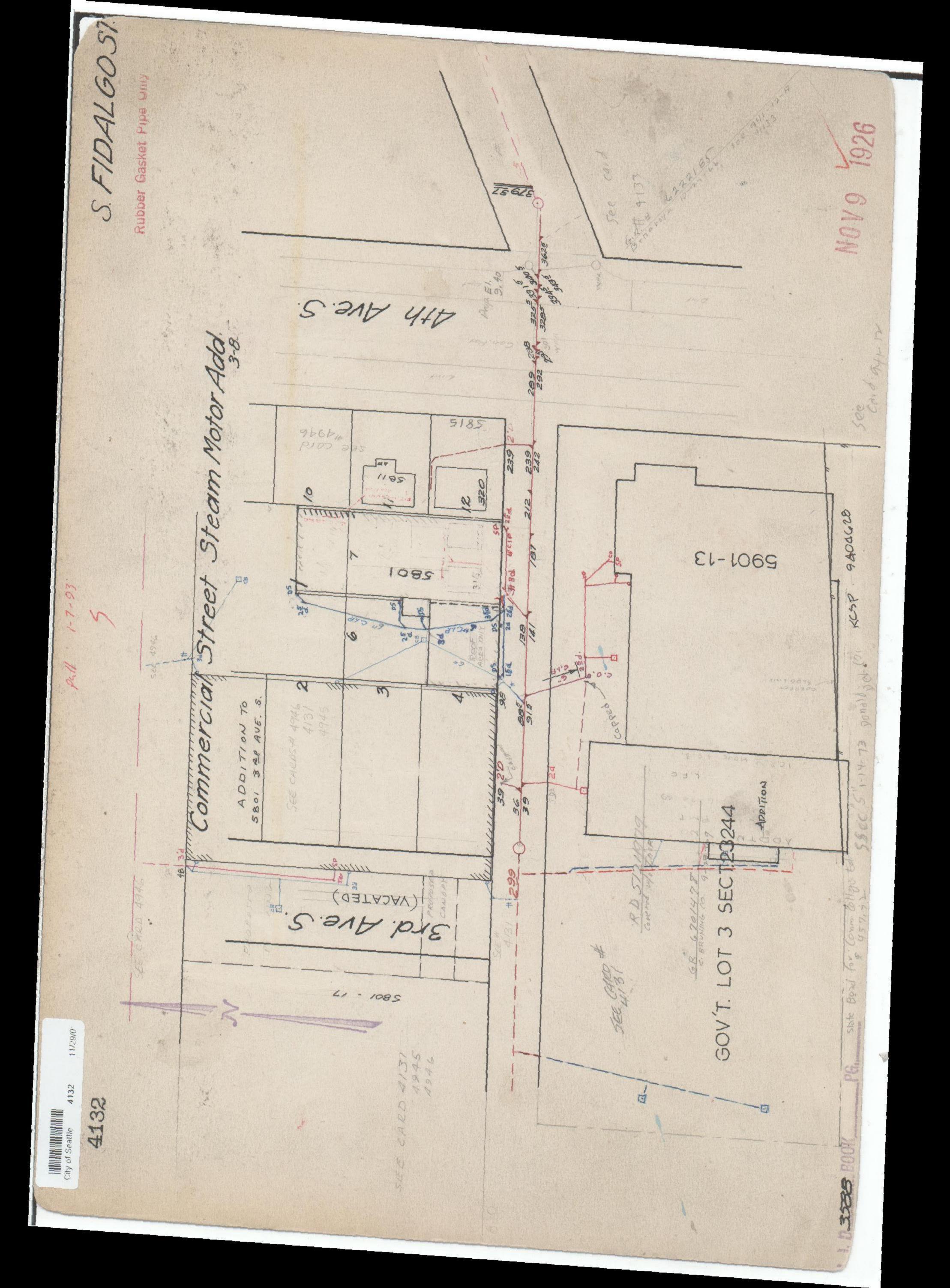
 $C_{indoor \ corr} = C_{indoor} - C_{outdoor}$ Exceedance Factors = Corrected indoor air concentration/IPIMAL IPIMAL = inhalation pathway interim measure action level


NCCEF = non-cancer cumulative exceedance factor


CCEF and NCEF values = cumulative total of individual EF values

### APPENDIX G SIDE SEWER CARDS


REVISED DRAFT REMEDIAL INVESTIGATION REPORT Capital Industries, Inc. 5801 3rd Avenue South Seattle, Washington


Farallon PN: 457-004





Stear 4945 11 1961 ò 14. 90 174 196 5 SEE CARD # 2131-1 of last 4 Gov7. Lot3 Sec 2 -00 2 1 0 5 3 93 137 L 5 All' 9 5 5 940222 0 N 3 Pull 4 345 p. 35 0 6-30 114 385 100-34 STEELANU 1.9 Call walls 45 REUK 12.22 22 .Fa 35 20 Prop. 8.0 234 Sec Sind Ave. S. 8294046 dSUH . D





### APPENDIX H BIOCHLOR TWO-DIMENSIONAL MODELING DATA

REVISED DRAFT REMEDIAL INVESTIGATION REPORT Capital Industries, Inc. 5801 3rd Avenue South Seattle, Washington

Farallon PN: 457-004

# Table 15Fate and Transport Modeling Input ParametersRemedial Investigation ReportCapital Industries, Inc.Seattle, WashingtonFarallon PN: 457-004

| Model Parameter                    | Units         | Data Source                                           | Water Table Zone | Shallow Zone | Intermediate Zone |
|------------------------------------|---------------|-------------------------------------------------------|------------------|--------------|-------------------|
| Hydraulic Gradient                 | foot per foot | Remedial Investigation                                | 0.0017           | 0.0016       | 0.0016            |
| Hydraulic Conductivity             | cm/s          | Aquifer Slug tests                                    | 1.13E-02         | 9.99E-03     | 2.13E-03          |
| Effective Porosity                 |               | Nominal Value                                         | 0.25             | 0.25         | 0.25              |
| Dispersivity                       |               |                                                       |                  |              |                   |
| Longitudinal ( $\alpha_x$ )        |               | Xu & Eckstein                                         | 31.2             | 31.2         | 31.2              |
| Transverse $(\alpha_y)$            |               | $(\alpha_{\rm x}) * 0.1$                              | 3.1              | 3.1          | 3.1               |
| Vertical $(\alpha_z)$              |               | No Vertical Dispersion                                | 1.0E-99          | 1.0E-99      | 1.0E-99           |
| Plume length for estimation        | feet          |                                                       | 1730             | 1730         | 1730              |
| Soil Bulk Density                  | kg/L          | MTCA Common Assumption                                | 1.51             | 1.51         | 1.51              |
| Soil Fraction Organic Carbon (foc) | per cent      | Soil Measurements                                     | 0.2              | 0.22         | 0.25              |
| Koc                                |               |                                                       |                  |              |                   |
| PCE                                | L/kg          | MTCA CLARC tables                                     | 265              | 265          | 265               |
| TCE                                | L/kg          | MTCA CLARC tables                                     | 94               | 94           | 94                |
| cis-1,2 DCE                        | L/kg          | MTCA CLARC tables                                     | 35.5             | 35.5         | 35.5              |
| VC                                 | L/kg          | MTCA CLARC tables                                     | 19               | 19           | 19                |
| Source Area Dimensions             |               |                                                       |                  |              |                   |
| Width                              | feet          | Remedial Investigation                                | 50               | 50           | 50                |
| Height                             | feet          | Remedial Investigation                                | 20               | 20           | 20                |
| Biodegradation Rates (half life)   |               |                                                       |                  |              |                   |
| PCE                                | years         | Literature Value (Newell 25 <sup>th</sup> percentile) | 1.2              | 1.2          | 1.2               |
| TCE                                | years         | Literature Value (Newell 25 <sup>th</sup> percentile) | 1.8              | 1.8          | 1.8               |
| cis-1,2 DCE                        | years         | Literature Value (Newell 25 <sup>th</sup> percentile) | 1.6              | 1.6          | 1.6               |
| VC                                 | years         | Literature Value (Newell 25 <sup>th</sup> percentile) | 1.7              | 1.7          | 1.7               |

# Table 15Fate and Transport Modeling Input ParametersRemedial Investigation ReportCapital Industries, Inc.Seattle, WashingtonFarallon PN: 457-004

| Model Parameter               | Units | Data Source                          | Water Table Zone     | Shallow Zone       | Intermediate Zone |
|-------------------------------|-------|--------------------------------------|----------------------|--------------------|-------------------|
|                               |       | Source Area Concentrat               | ions                 |                    |                   |
| 1 Centerline "Source" Well(s) |       |                                      | CI-12-WT; CI-14-WT   | CI-12-30; CI-14-35 | CI-15-60          |
| PCE                           | ug/L  | Average Concentration over RI Period | 0.2 U                | 0.4 U              | 0.4 U             |
| TCE                           | ug/L  | Maximum Concentration over RI Period | 0.2 U                | 0.4 U              | 0.4 U             |
| TCE                           | ug/L  | Average Concentration over RI Period | 1.1                  | 67.2               | 0.4 U             |
| ICE                           | ug/L  | Maximum Concentration over RI Period | 1.7                  | 83                 | 0.4 U             |
| cis-1,2 DCE                   | ug/L  | Average Concentration over RI Period | 14.2                 | 26.2               | 0.4 U             |
| CIS-1,2 DCE                   | ug/L  | Maximum Concentration over RI Period | 48                   | 33                 | 0.4 U             |
| VC                            | ngЛ   | Average Concentration over RI Period | 2.5                  | 19.2               | 103               |
| vc                            | ug/L  | Maximum Concentration over RI Period | 10                   | 28                 | 140               |
| 2 Centerline "Source" Well(s) |       |                                      | CI-10-WT             | CG-141-40          | NA                |
| PCE                           | nаЛ   | Average Concentration over RI Period | 0.2 U                | 1 U                |                   |
| PCE                           | ug/L  | Maximum Concentration over RI Period | 0.2 U                | 1 U                |                   |
| ТСЕ                           |       | Average Concentration over RI Period | 49.1                 | 1 U                |                   |
| ICE                           | ug/L  | Maximum Concentration over RI Period | 87                   | 1 U                |                   |
| cis-1,2 DCE                   | wаЛ   | Average Concentration over RI Period | 22.4                 | 1 U                |                   |
| CIS-1,2 DCE                   | ug/L  | Maximum Concentration over RI Period | 35                   | 1 U                |                   |
| VC                            | ug/L  | Average Concentration over RI Period | 0.21                 | 213.3              |                   |
| ve                            | ug/L  | Maximum Concentration over RI Period | 0.21                 | 270                |                   |
| 3 Centerline "Source" Well(s) |       |                                      | MW-5; MW-6; BDC-6-WT | NA                 | NA                |
| PCE                           | ug/L  | Average Concentration over RI Period | 8.7                  |                    |                   |
| FCE                           | ug/L  | Maximum Concentration over RI Period | 11                   |                    |                   |
| TCE                           | ug/L  | Average Concentration over RI Period | 170                  |                    |                   |
| ICE                           | ug/L  | Maximum Concentration over RI Period | 230                  |                    |                   |
| cis-1,2 DCE                   | nаЛ   | Average Concentration over RI Period | 91.4                 |                    |                   |
| CIS-1,2 DCE                   | ug/L  | Maximum Concentration over RI Period | 130                  |                    |                   |
| VC                            | na/I  | Average Concentration over RI Period | 9.7                  |                    |                   |
|                               | ug/L  | Maximum Concentration over RI Period | 20                   |                    |                   |
| Source Type                   |       | Assumed                              | Continuous*          | Continuous*        | Continuous        |
| Simulation Time               | years | Nominal Value                        | 500                  | 500                | 500               |

#### NOTES:

Biodegradation rates from Figure 5 of Newell, C. et al, 2002. Calculation and Use of First Order Rate Constants for EPA Studies. November.

Some source areas represented using multiple wells at approximately the same distance from Duwamish to represent maximum COC concentration (PCE, TCE, etc.) at that location.

Hydraulic conductivity values discussed in Remedial Investigation Report. Geometric mean of slug test values for each zone DCI used for modeling.

CLARC = Cleanup Levels and Risk u/g = micrograms per liter

|   | Calculations                        | MTCA = Washington State Model Toxics Control Act |
|---|-------------------------------------|--------------------------------------------------|
|   | cm/s = centimeters per second       | Cleanup Regulation                               |
|   | COC = contaminants of concern       | NA = not analyzed                                |
| e | DCE = dichloroethene                | PCE = tetrachloroethene                          |
|   | EPA = U.S. Environmental Protection | TCE = trichloroethene                            |
|   | kg/L = kilograms per liter          | U = not detected at reporting limit indicated    |
|   | L/kg = liters per kilogram          | VC = vinyl chloride                              |
|   |                                     |                                                  |

\* Decaying source used for some alternate simulations in the Water Table Zone (Source 2) and Shallow Zone (Source 1) 2 of 2

G:\Projects\457 Capital Indust\457004 Plants 2 and 4 RIFS\Reports\Revised RI\Apx H BIOCHLOR Two-Dimensional Modeling Data\Table 15 Model Inputs - Revised RI

**DRAFT** - Issued for Ecology Review

## Table 16Fate and Transport Modeling ResultsRemedial Investigation ReportCapital Industries, Inc.Seattle, WashingtonFarallon PN: 457-004

|                 |                                 | Source<br>Distance<br>from | PCE Source<br>Concentration | Simulat<br>Concent<br>Duwa | ration at | TCE Source<br>Concentration | Simulat<br>Concent<br>Duwa | ration at | cis-1,2-DCE<br>Source<br>Concentration | Simulate<br>DCE Con<br>at Duv | centration | Vinyl Chloride<br>Source<br>Concentration | Simulate      | d Vinyl Chloride<br>Duwamis | Concentration at<br>h     |
|-----------------|---------------------------------|----------------------------|-----------------------------|----------------------------|-----------|-----------------------------|----------------------------|-----------|----------------------------------------|-------------------------------|------------|-------------------------------------------|---------------|-----------------------------|---------------------------|
| Aquifer<br>Zone | Source Area Number and<br>Wells | Duwamish<br>(feet)         | (Average &<br>Maximum)      | Long-<br>Term              | Peak      | (Average &<br>Maximum)      | Long-<br>Term              | Peak      | (Average &<br>Maximum)                 | Long-<br>Term                 | Peak       | (Average &<br>Maximum)                    | Long-<br>Term | Peak                        | Peak (Decaying<br>Source) |
|                 | 1. CI-12-WT; CI-14-WT           | 550                        | 0                           | 0                          | 0         | 1.1                         | 0.04                       | 0.04      | 14.2                                   | 0.39                          | 0.39       | 2.5                                       | 0.66          | 0.66                        |                           |
|                 | 1. CF12-W1, CF14-W1             | 550                        | 0                           | 0                          | 0         | 1.7                         | 0.05                       | 0.05      | 48                                     | 1.24                          | 1.24       | 10                                        | 2.21          | 2.21                        | 1.18 (15 yrs)             |
| Water Table     | 2. CI-10-WT                     | 850                        | 0                           | 0                          | 0         | 49.1                        | 0.35                       | 0.35      | 22.4                                   | 0.79                          | 0.79       | 0.21                                      | 1.12          | 1.12                        |                           |
| Zone            | 2. CI-10- w I                   | 850                        | 0                           | 0                          | 0         | 87                          | 0.62                       | 0.62      | 35                                     | 1.37                          | 1.37       | 0.21                                      | 1.92          | 2.67 (15 yrs)               | 0.95 (25 yrs)             |
|                 | 3. MW-5; MW-6; BDC-6-WT         | 1500                       | 8.7                         | 0                          | 0         | 170                         | 0.06                       | 0.06      | 91.4                                   | 0.20                          | 0.20       | 9.7                                       | 0.46          | 0.46                        |                           |
|                 | 5. MW-5, MW-0, BDC-0-W1         | 1500                       | 11                          | 0                          | 0         | 230                         | 0.09                       | 0.09      | 130                                    | 0.27                          | 0.27       | 20                                        | 0.63          | 0.63                        |                           |
|                 | 1. CI-12-30: CI-14-35           | 550                        | 0                           | 0                          | 0         | 67.2                        | 1.40                       | 1.40      | 26.2                                   | 2.54                          | 2.54       | 19.2                                      | 3.13          | 3.13                        | 1.52 (20 yrs)             |
| Shallow         | 1. CI-12-50, CI-14-55           | 350                        | 0                           | 0                          | 0         | 83                          | 1.72                       | 1.72      | 33                                     | 3.15                          | 3.15       | 28                                        | 3.96          | 3.96                        | 1.92 (20 yrs)             |
| Zone            | 2. CG-141-40                    | 1050                       | 0                           | 0                          | 0         | 0                           | 0                          | 0         | 0                                      | 0                             | 0          | 213.3                                     | 0.2           | 0.2                         |                           |
|                 | 2. CG-141-40                    | 1050                       | 0                           | 0                          | 0         | 0                           | 0                          | 0         | 0                                      | 0                             | 0          | 270                                       | 0.25          | 0.25                        |                           |
| Intermediate    |                                 |                            | 0                           | 0                          | 0         | 0                           | 0                          | 0         | 0                                      | 0                             | 0          | 103                                       | 0             | 0                           |                           |
| Zone            | 1. CI-15-60                     | 850                        | 0                           | 0                          | 0         | 0                           | 0                          | 0         | 0                                      | 0                             | 0          | 140                                       | 0             | 0                           |                           |

1 of 1

NOTES:

Bold denotes simulated concentration above applicable screening level

All concentrations reported in micrograms per liter (ug/L).

Source areas represent Average and Maximum groundwater concentrations over RI Monitoring Period at each well grouping and distance.

Average source concentration is listed in upper row for each COC; maximum source concentration in lower row

Long-term simulated concentrations represent concentrations at 500 years and assume biotransformation is occurring.

Peak concentrations represent maximum simulated concentration if greater than long-term concentration.

Simulations performed using U.S. Environmental Protection Agency BIOCHLOR model. Continous source terms were modeled unless a decaying source is indicated

Continious source terms were modeled unless a decaying source is indicated

Source decay rate of 0.1 (1/yr) was used for each decaying source simulation

| DCE = dichloroethene           |
|--------------------------------|
| COCs = constituents of concern |
| PCE = tetrachloroethene        |
| RI = Remedial Investigation    |

TCE = trichloroethene

# Table 17Fate and Transport Modeling - Sensitivity Analysis ResultsRemedial Investigation ReportCapital Industries, Inc.Seattle, WashingtonFarallon PN: 457-004

| Aquifer<br>Zone | Source Area Number and<br>Wells | Source Distance<br>from Duwamish<br>(feet) | Sensitivity Analysis<br>Variation | Simulated PCE<br>Concentration at<br>Duwamish | Simulated TCE<br>Concentration at<br>Duwamish | Simulated cis-1,2-DCE<br>Concentration at<br>Duwamish | Simulated Vinyl Chloride<br>Concentration at<br>Duwamish |
|-----------------|---------------------------------|--------------------------------------------|-----------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|
|                 | 1. CI-12-WT; CI-14-WT           | 550                                        | Base Case                         | 0                                             | 0.04                                          | 0.39                                                  | 0.66                                                     |
|                 |                                 |                                            | Source Concentration x2           | 0                                             | 0.07                                          | 0.78                                                  | 1.33                                                     |
|                 |                                 |                                            | Source Concentration x0.5         | 0                                             | 0.02                                          | 0.20                                                  | 0.33                                                     |
|                 |                                 |                                            | Half Life x5                      | 0                                             | 0.22                                          | 2.70                                                  | 1.46                                                     |
|                 |                                 |                                            | Half Life x0.2                    | 0                                             | 0                                             | 0                                                     | 0.002                                                    |
|                 |                                 |                                            | Hydraulic Conductivity x10        | 0                                             | 0.28                                          | 3.55                                                  | 1.29                                                     |
|                 |                                 |                                            | Hydraulic Conductivity x0.1       | 0                                             | 0                                             | 0                                                     | 0                                                        |
|                 |                                 |                                            | Retardation x2                    | 0                                             | 0.04                                          | 0.39                                                  | 0.66                                                     |
|                 |                                 |                                            | Retardation x0.5                  | 0                                             | 0.04                                          | 0.39                                                  | 0.66                                                     |
|                 |                                 |                                            | Dispersivity x2                   | 0                                             | 0.03                                          | 0.35                                                  | 0.52                                                     |
| Water Table     |                                 |                                            | Dispersivity x0.5                 | 0                                             | 0.04                                          | 0.46                                                  | 0.86                                                     |
| Zone            | 2. CI-10-WT                     | 850                                        | Base Case                         | 0                                             | 0.35                                          | 0.79                                                  | 1.12                                                     |
|                 |                                 |                                            | Source Concentration x2           | 0                                             | 0.70                                          | 1.58                                                  | 2.23                                                     |
|                 |                                 |                                            | Source Concentration x0.5         | 0                                             | 0.18                                          | 0.39                                                  | 0.66                                                     |
|                 |                                 |                                            | Half Life x5                      | 0                                             | 1.93                                          | 2.99                                                  | 2.56                                                     |
|                 |                                 |                                            | Half Life x0.2                    | 0                                             | 0                                             | 0                                                     | 0                                                        |
|                 |                                 |                                            | Hydraulic Conductivity x10        | 0                                             | 8.79                                          | 6.34                                                  | 1.55                                                     |
|                 |                                 |                                            | Hydraulic Conductivity x0.1       | 0                                             | 0                                             | 0                                                     | 0                                                        |
|                 |                                 |                                            | Retardation x2                    | 0                                             | 0.35                                          | 0.79                                                  | 1.12                                                     |
|                 |                                 |                                            | Retardation x0.5                  | 0                                             | 0.35                                          | 0.79                                                  | 1.12                                                     |
|                 |                                 |                                            | Dispersivity x2                   | 0                                             | 0.34                                          | 0.7                                                   | 0.88                                                     |
|                 |                                 |                                            | Dispersivity x0.5                 |                                               | 0.39                                          | 0.95                                                  | 1.45                                                     |

1 of 3

# Table 17Fate and Transport Modeling - Sensitivity Analysis ResultsRemedial Investigation ReportCapital Industries, Inc.Seattle, WashingtonFarallon PN: 457-004

| Aquifer             | Source Area Number and  | Source Distance<br>from Duwamish | Sensitivity Analysis        | Simulated PCE<br>Concentration at | Simulated TCE<br>Concentration at | Simulated cis-1,2-DCE<br>Concentration at | Simulated Vinyl Chloride<br>Concentration at |
|---------------------|-------------------------|----------------------------------|-----------------------------|-----------------------------------|-----------------------------------|-------------------------------------------|----------------------------------------------|
| Zone                | Wells                   | (feet)                           | Variation                   | Duwamish                          | Duwamish                          | Duwamish                                  | Duwamish                                     |
|                     | 3. MW-5; MW-6; BDC-6-WT | 1500                             | Base Case                   | 0                                 | 0.06                              | 0.20                                      | 0.46                                         |
|                     |                         |                                  | Source Concentration x2     | 0                                 | 0.13                              | 0.40                                      | 0.93                                         |
| Water Table<br>Zone |                         |                                  | Source Concentration x0.5   | 0                                 | 0.03                              | 0.10                                      | 0.23                                         |
|                     |                         |                                  | Half Life x5                | 0.22                              | 8.96                              | 11.94                                     | 8.57                                         |
|                     |                         |                                  | Half Life x0.2              | 0                                 | 0                                 | 0.00                                      | 0                                            |
|                     |                         |                                  | Hydraulic Conductivity x10  | 0.61                              | 17.56                             | 16.93                                     | 7.56                                         |
|                     |                         |                                  | Hydraulic Conductivity x0.1 | 0                                 | 0                                 | 0.00                                      | 0                                            |
|                     |                         |                                  | Retardation x2              | 0                                 | 0.06                              | 0.20                                      | 0.46                                         |
|                     |                         |                                  | Retardation x0.5            | 0                                 | 0.06                              | 0.20                                      | 0.46                                         |
|                     |                         |                                  | Dispersivity x2             | 0                                 | 0.08                              | 0.23                                      | 0.46                                         |
|                     |                         |                                  | Dispersivity x0.5           | 0                                 | 0.06                              | 0.21                                      | 0.52                                         |
|                     | 1. CI-12-30; CI-14-35   | 550                              | Base Case                   | 0                                 | 1.40                              | 2.54                                      | 3.13                                         |
|                     |                         |                                  | Source Concentration x2     | 0                                 | 2.79                              | 5.08                                      | 6.26                                         |
|                     |                         |                                  | Source Concentration x0.5   | 0                                 | 0.70                              | 1.27                                      | 1.56                                         |
|                     |                         |                                  | Half Life x5                | 0                                 | 11.96                             | 9.40                                      | 6.42                                         |
|                     |                         |                                  | Half Life x0.2              | 0                                 | 0.00                              | 0.003                                     | 0.009                                        |
| Shallow             |                         |                                  | Hydraulic Conductivity x10  | 0                                 | 16.21                             | 9.7                                       | 6.37                                         |
| Zone                |                         |                                  | Hydraulic Conductivity x0.1 | 0                                 | 0                                 | 0                                         | 0                                            |
|                     |                         |                                  | Retardation x2              | 0                                 | 1.40                              | 2.54                                      | 3.13                                         |
|                     |                         |                                  | Retardation x0.5            | 0                                 | 1.40                              | 2.54                                      | 3.13                                         |
|                     |                         |                                  | Dispersivity x2             | 0                                 | 1.32                              | 2.12                                      | 2.38                                         |
|                     |                         |                                  | Dispersivity x0.5           | 0                                 | 1.59                              | 3.15                                      | 4.12                                         |

2 of 3

# Table 17Fate and Transport Modeling - Sensitivity Analysis ResultsRemedial Investigation ReportCapital Industries, Inc.Seattle, WashingtonFarallon PN: 457-004

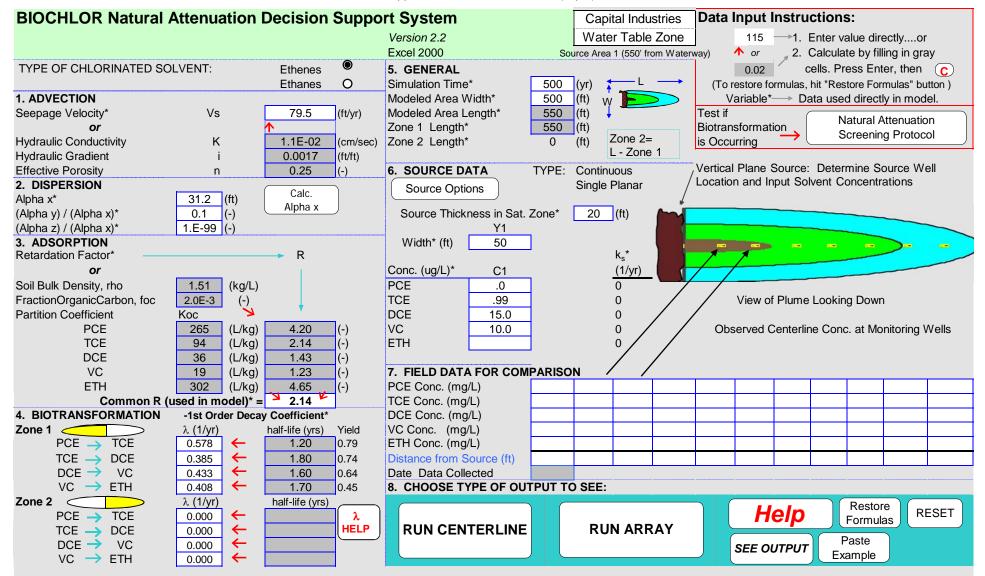
| Aquifer<br>Zone      | Source Area Number and<br>Wells | Source Distance<br>from Duwamish<br>(feet) | Sensitivity Analysis<br>Variation | Simulated PCE<br>Concentration at<br>Duwamish | Simulated TCE<br>Concentration at<br>Duwamish | Simulated cis-1,2-DCE<br>Concentration at<br>Duwamish | Simulated Vinyl Chloride<br>Concentration at<br>Duwamish |
|----------------------|---------------------------------|--------------------------------------------|-----------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|
|                      |                                 | 1050                                       | Base Case                         | 0                                             | 0                                             | 0                                                     | 0.2                                                      |
|                      |                                 |                                            | Source Concentration x2           | 0                                             | 0                                             | 0                                                     | 0.4                                                      |
|                      |                                 |                                            | Source Concentration x0.5         | 0                                             | 0                                             | 0                                                     | 0.1                                                      |
|                      |                                 |                                            | Half Life x5                      | 0                                             | 0                                             | 0                                                     | 14.86                                                    |
|                      |                                 |                                            | Half Life x0.2                    | 0                                             | 0                                             | 0                                                     | 0                                                        |
| Shallow              | 2. CG-141-40                    |                                            | Hydraulic Conductivity x10        | 0                                             | 0                                             | 0                                                     | 27.42                                                    |
| Zone                 |                                 |                                            | Hydraulic Conductivity x0.1       | 0                                             | 0                                             | 0                                                     | 0                                                        |
|                      |                                 |                                            | Retardation x2                    | 0                                             | 0                                             | 0                                                     | 0.2                                                      |
|                      |                                 |                                            | Retardation x0.5                  | 0                                             | 0                                             | 0                                                     | 0.2                                                      |
|                      |                                 |                                            | Dispersivity x2                   | 0                                             | 0                                             | 0                                                     | 0.25                                                     |
|                      |                                 |                                            | Dispersivity x0.5                 | 0                                             | 0                                             | 0                                                     | 0.19                                                     |
|                      | 1. CI-15-60                     | 850                                        | Base Case                         | 0                                             | 0                                             | 0                                                     | 0                                                        |
|                      |                                 |                                            | Source Concentration x2           | 0                                             | 0                                             | 0                                                     | 0                                                        |
|                      |                                 |                                            | Source Concentration x0.5         | 0                                             | 0                                             | 0                                                     | 0                                                        |
|                      |                                 |                                            | Half Life x5                      | 0                                             | 0                                             | 0                                                     | 0.37                                                     |
| Intermediate<br>Zone |                                 |                                            | Half Life x0.2                    | 0                                             | 0                                             | 0                                                     | 0                                                        |
|                      |                                 |                                            | Hydraulic Conductivity x10        | 0                                             | 0                                             | 0                                                     | 2.78                                                     |
|                      |                                 |                                            | Hydraulic Conductivity x0.1       | 0                                             | 0                                             | 0                                                     | 0                                                        |
|                      |                                 |                                            | Retardation x2                    | 0                                             | 0                                             | 0                                                     | 0                                                        |
|                      |                                 |                                            | Retardation x0.5                  | 0                                             | 0                                             | 0                                                     | 0                                                        |
|                      |                                 |                                            | Dispersivity x2                   | 0                                             | 0                                             | 0                                                     | 0                                                        |
|                      |                                 |                                            | Dispersivity x0.5                 | 0                                             | 0                                             | 0                                                     | 0                                                        |

3 of 3

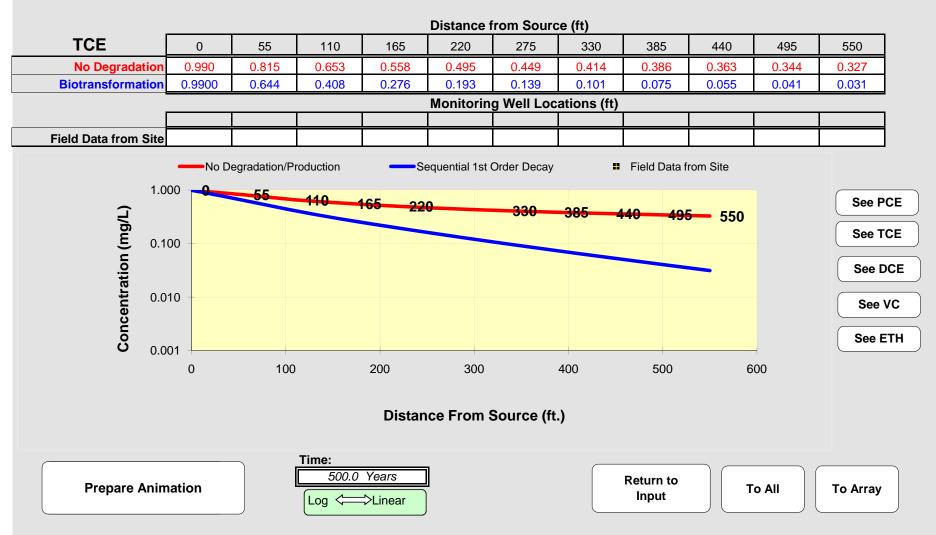
NOTES:

Bold denotes simulated concentration exceeds applicable screening level

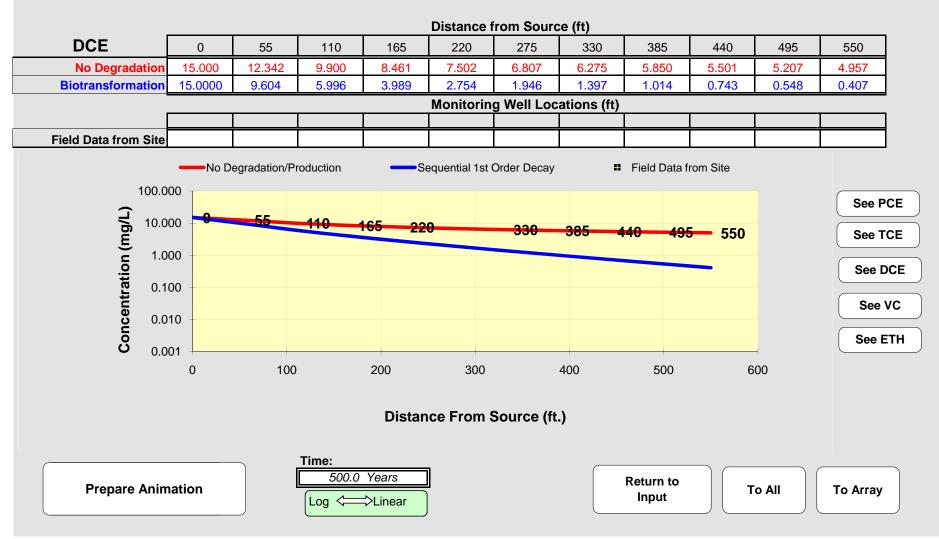
All concentrations reported in micrograms per liter (ug/L).


Base case simulations represent average groundwater source concentrations over RI monitoring period at each well grouping and distance.

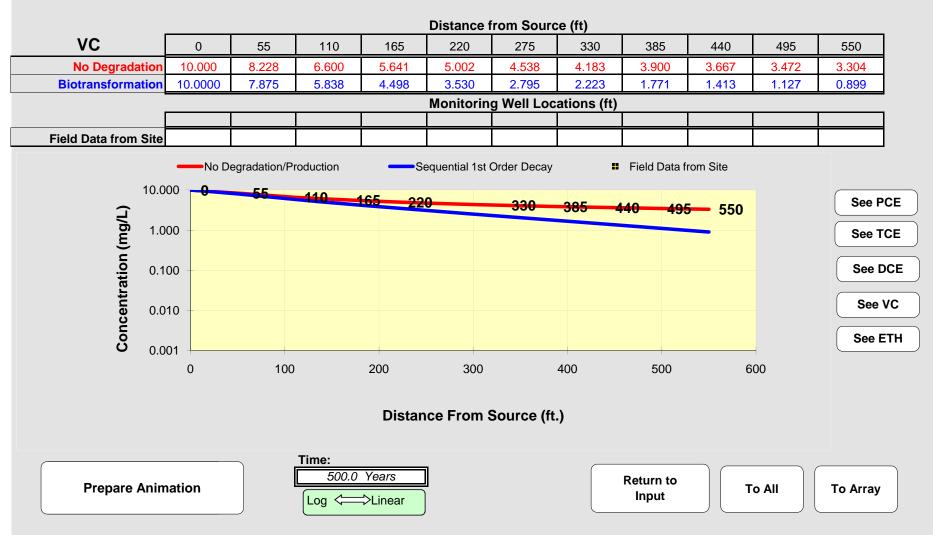
Simulated concentrations at 500 years and assume biotransformation is occurring.


Simulations performed using U.S. Environmental Protection Agency BIOCHLOR model.

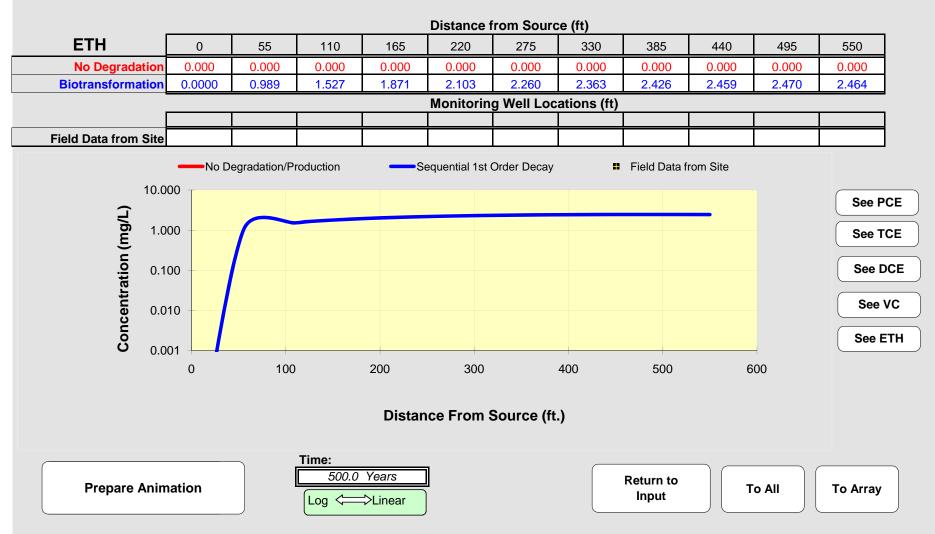
DCE = dichloroethene PCE = tetrachloroethene RI = Remedial Investigation TCE = trichloroethene


#### BIOCHLOR Model Inputs Water Table Zone "Source Area" 1 Near Wells CI-12-WT and CI-14-WT Approx. 550 feet from Duwamish (Slip 2)

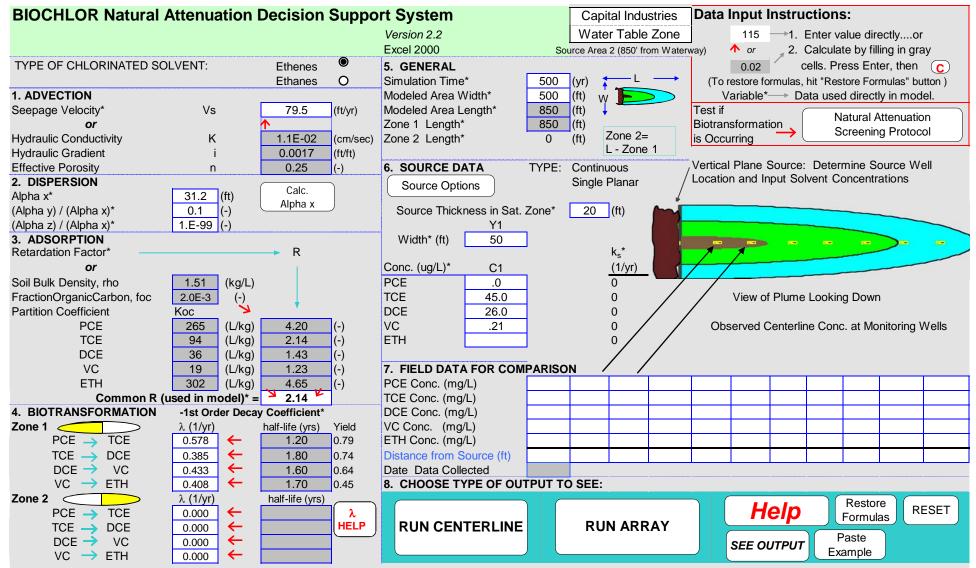


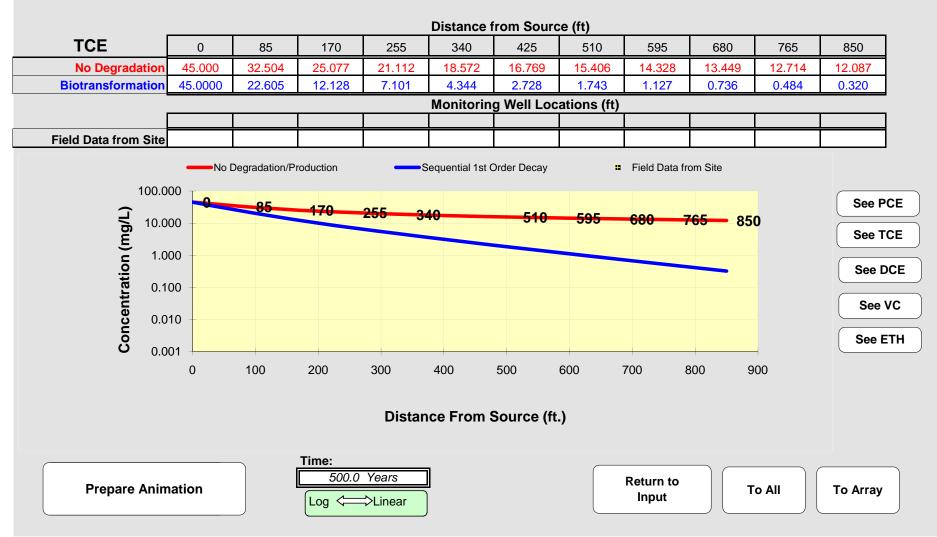






#### DISSOLVED CHLORINATED SOLVENT CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0

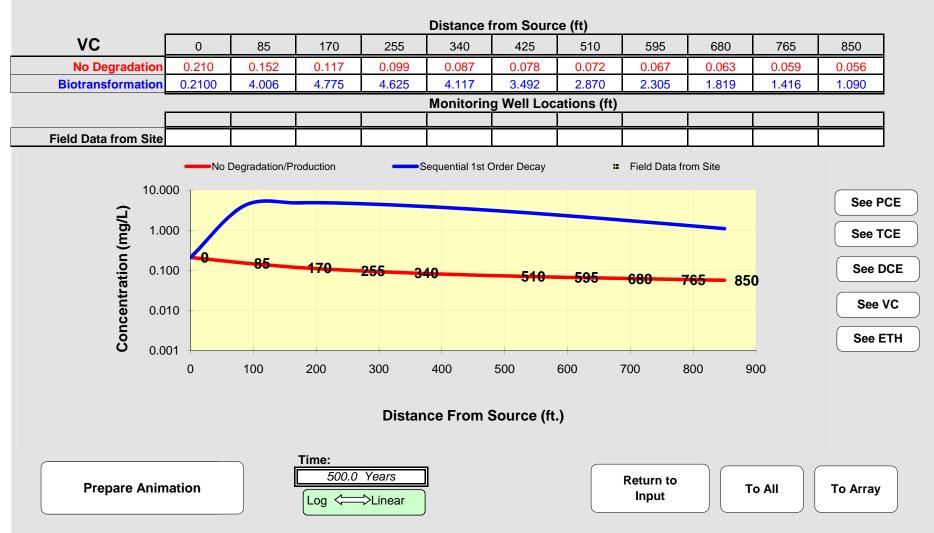




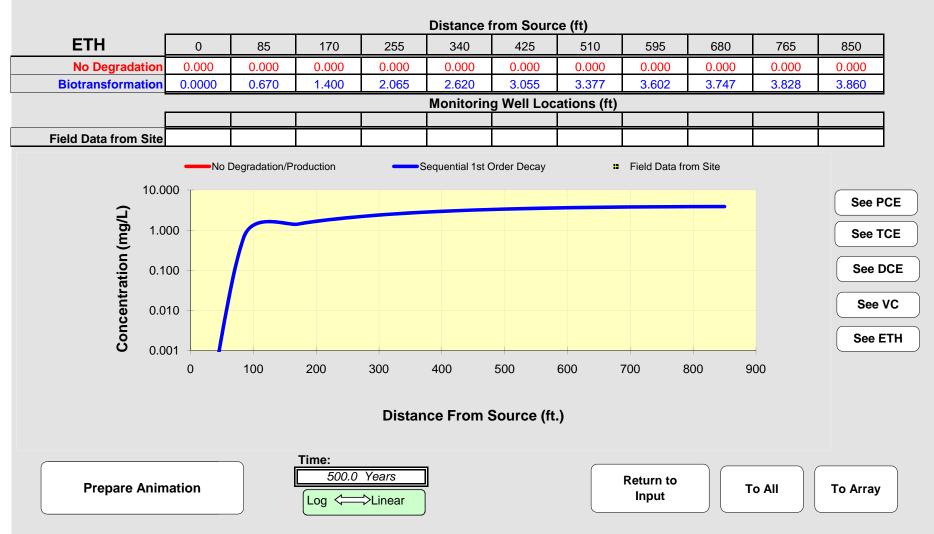









#### BIOCHLOR Model Inputs Water Table Zone "Source Area" 2 Near Well CI-10-WT Approx. 850 feet from Duwamish (Slip 2)



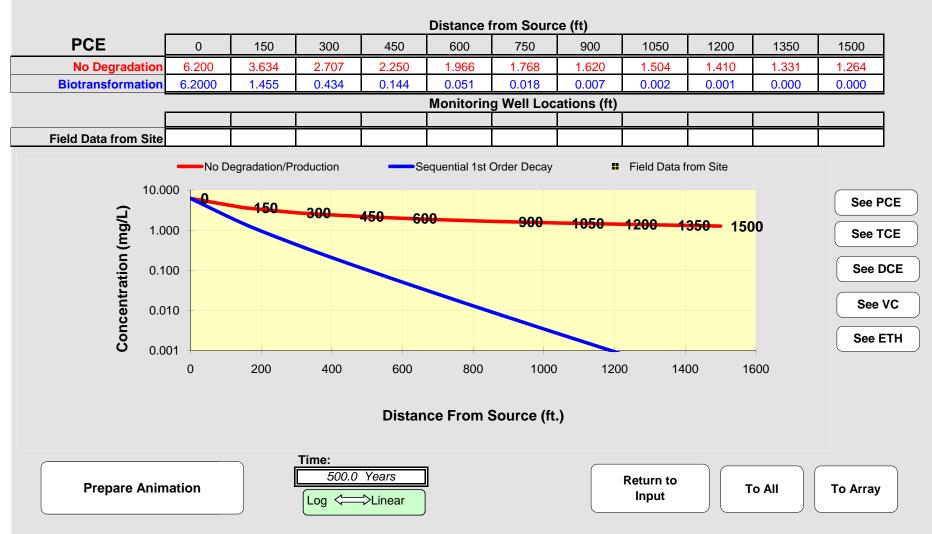




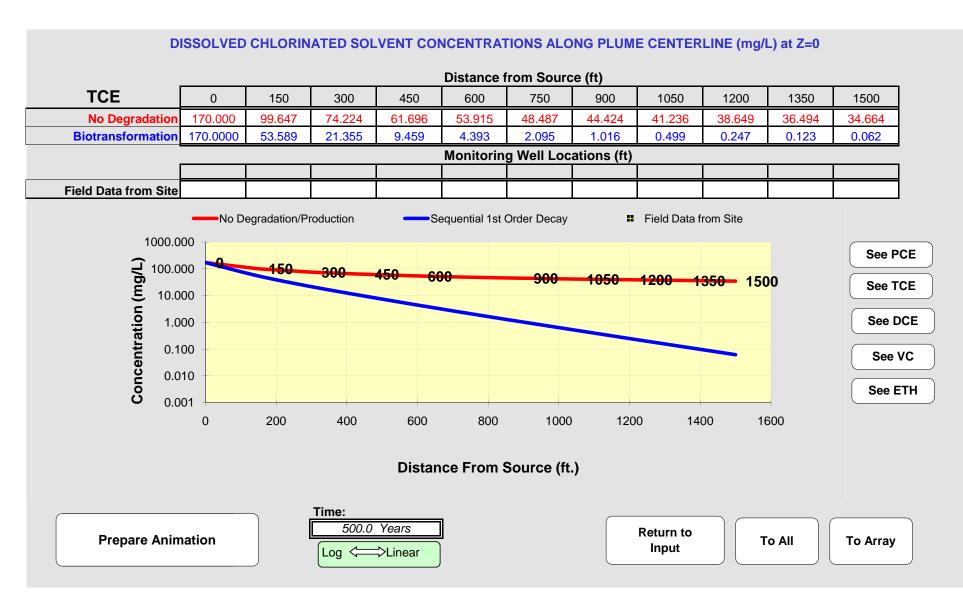




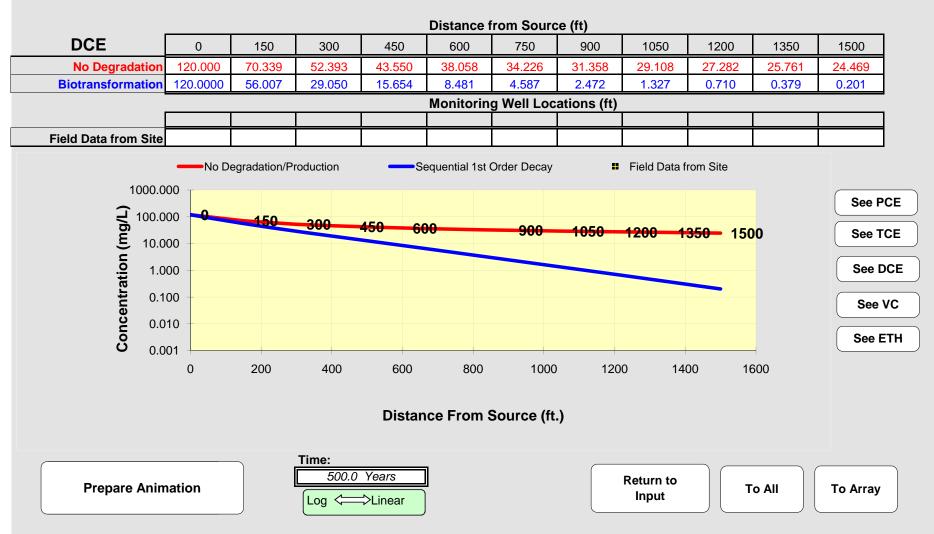



#### BIOCHLOR Model Inputs "Source Area" 3 Near Wells MW-5, MW-6, BDC-6-WT Approx. 1500 feet from Duwamish (Slip 2)


| <b>BIOCHLOR Natural</b>                 | Attenuation         | Decision                | Suppo                                        | rt System                           | Capital Industries Data Input Instructions:                                     |
|-----------------------------------------|---------------------|-------------------------|----------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------|
|                                         |                     |                         |                                              | Version 2.2                         | Water Table Zone 115 $\rightarrow$ 1. Enter value directlyor                    |
|                                         |                     |                         |                                              | Excel 2000                          | Source Area 3 (1500' from Waterway) $\wedge$ or 2. Calculate by filling in gray |
| TYPE OF CHLORINATED SO                  | VENT:               | Ethenes                 | ۲                                            | 5. GENERAL                          | 0.02 cells. Press Enter, then C                                                 |
|                                         |                     | Ethanes                 | 0                                            | Simulation Time*                    | 500 (yr) L (To restore formulas, hit "Restore Formulas" button )                |
| 1. ADVECTION                            |                     | 20101100                |                                              | Modeled Area Width*                 | 500 (ft) W Variable* Data used directly in model.                               |
| Seepage Velocity*                       | Vs                  | 79.5                    | (ft/yr)                                      | Modeled Area Length*                | 1500 (ft) Test if                                                               |
| or                                      |                     | <b>^</b>                | ()-)                                         | Zone 1 Length*                      | 1500 (ft) Biotransformation Natural Alternation                                 |
| Hydraulic Conductivity                  | К                   | 1.1E-02                 | (cm/sec)                                     | Zone 2 Length*                      | $0$ (ft) Zone 2= is Occurring $\rightarrow$ Screening Protocol                  |
| Hydraulic Gradient                      | i                   | 0.0017                  | (ft/ft)                                      | U U                                 | L - Zone 1                                                                      |
| Effective Porosity                      | n                   | 0.25                    | (-)                                          | 6. SOURCE DATA                      | TYPE: Continuous / Vertical Plane Source: Determine Source Well                 |
| 2. DISPERSION                           |                     |                         | <u>`````````````````````````````````````</u> | Source Options                      | Single Planar / Location and Input Solvent Concentrations                       |
| Alpha x*                                | 31.2 (ft)           | Calc.                   |                                              |                                     |                                                                                 |
| (Alpha y) / (Alpha x)*                  | 0.1 (-)             | Alpha x                 | )                                            | Source Thickness in Sat.            | Zone* 20 (ft)                                                                   |
| (Alpha z) / (Alpha x)*                  | 1.E-99 (-)          |                         |                                              | Y1                                  |                                                                                 |
| 3. ADSORPTION                           |                     |                         |                                              | Width* (ft) 50                      |                                                                                 |
| Retardation Factor*                     |                     | —► R                    |                                              |                                     | ks*                                                                             |
| or                                      |                     | 1                       |                                              | Conc. (ug/L)* C1                    | (1/yr)                                                                          |
| Soil Bulk Density, rho                  | 1.51 (kg/L)         |                         |                                              | PCE 6.2                             | 0                                                                               |
| FractionOrganicCarbon, foc              | 2.0E-3 (-)          |                         |                                              | TCE 170.0                           | 0 / View of Plume Looking Down                                                  |
| Partition Coefficient                   | Koc 🎽               | · ·                     | •                                            | DCE 120.0                           | 0 / /                                                                           |
| PCE                                     | 265 (L/kg)          | 4.20                    | (-)                                          | VC 4.6                              | 0 / Observed Centerline Conc. at Monitoring Wells                               |
| TCE                                     | 94 (L/kg)           |                         | (-)                                          | ETH                                 | 0//                                                                             |
| DCE                                     | 36 (L/kg)           |                         | (-)                                          |                                     |                                                                                 |
| VC                                      | 19 (L/kg)           | 1.23                    | (-)                                          | 7. FIELD DATA FOR COM               | PARISON / /                                                                     |
| ETH                                     | 302 (L/kg)          | 4.65                    | (-)                                          | PCE Conc. (mg/L)                    |                                                                                 |
|                                         | used in model)* =   |                         |                                              | TCE Conc. (mg/L)                    |                                                                                 |
| 4. BIOTRANSFORMATION                    | -1st Order Deca     | •                       | Viala                                        | DCE Conc. (mg/L)                    |                                                                                 |
| Zone 1 $\bigcirc$ PCE $\rightarrow$ TCE | λ (1/yr)<br>0.578 ← | half-life (yrs)<br>1.20 | Yield<br>0.79                                | VC Conc. (mg/L)<br>ETH Conc. (mg/L) |                                                                                 |
| TCE $\rightarrow$ DCE                   | 0.385               |                         | 0.79                                         | Distance from Source (ft)           |                                                                                 |
| $DCE \rightarrow VC$                    | 0.433               |                         | 0.74                                         | Date Data Collected                 |                                                                                 |
| $VC \rightarrow ETH$                    | 0.408               |                         | 0.04                                         | 8. CHOOSE TYPE OF OU                | TPUT TO SEE                                                                     |
| Zone 2                                  | λ (1/yr)            | half-life (yrs)         | 0.10                                         |                                     |                                                                                 |
| PCE  TCE                                | 0.000               |                         | λ                                            |                                     | Help Restore RESET                                                              |
|                                         | 0.000               |                         | HELP                                         | RUN CENTERLINE                      |                                                                                 |
| DCE -> VC                               | 0.000 ←             |                         | $\square$                                    |                                     | SEE OUTPUT                                                                      |
| VC $\rightarrow$ ETH                    | 0.000 ←             |                         |                                              |                                     | SEL COTFOT Example                                                              |

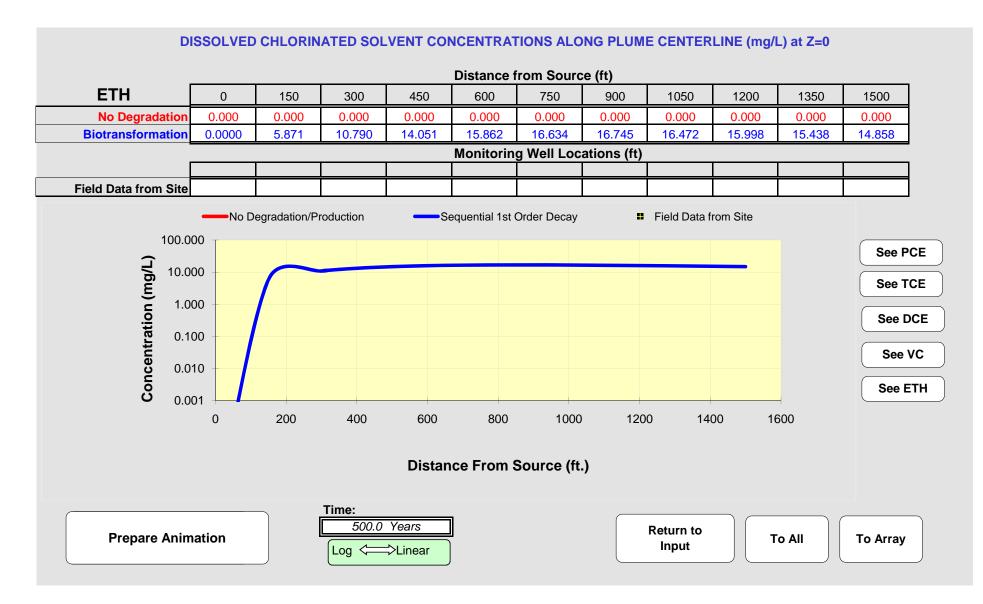
## Simulated PCE Concentrations "Source Area" 3: MW-5, MW-6, BDC-6-WT; 1500 feet from Slip 2



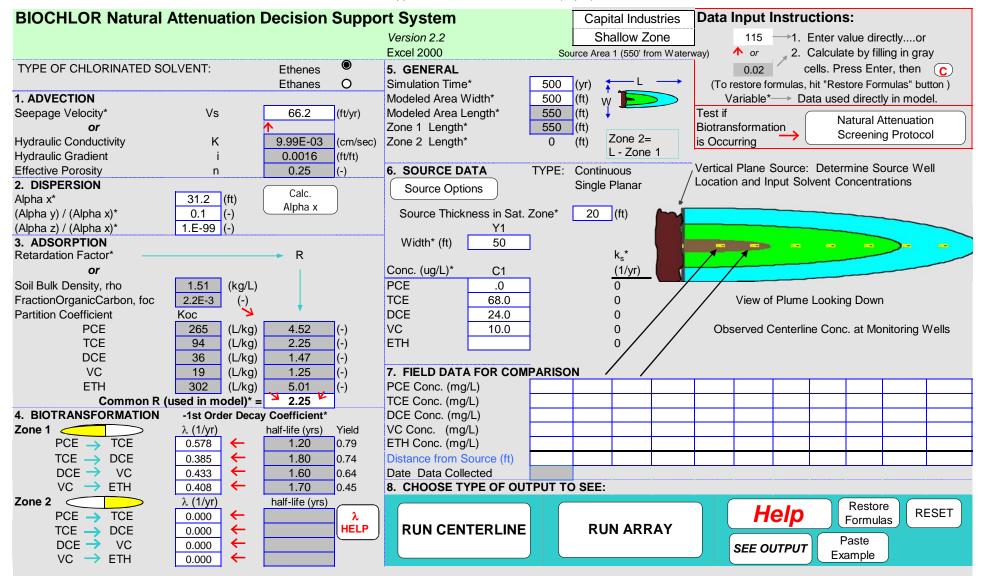


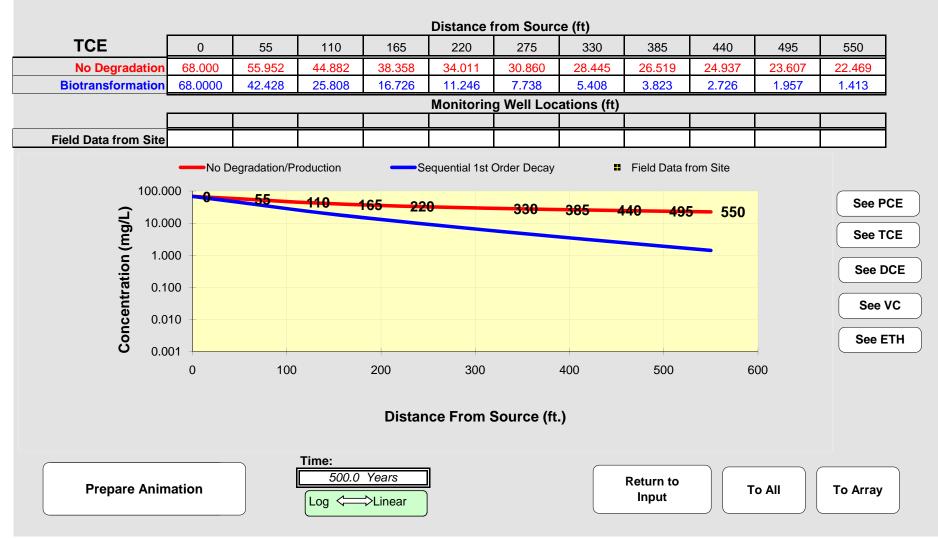

## Simulated TCE Concentrations "Source Area" 3: MW-5, MW-6, BDC-6-WT; 1500 feet from Slip 2

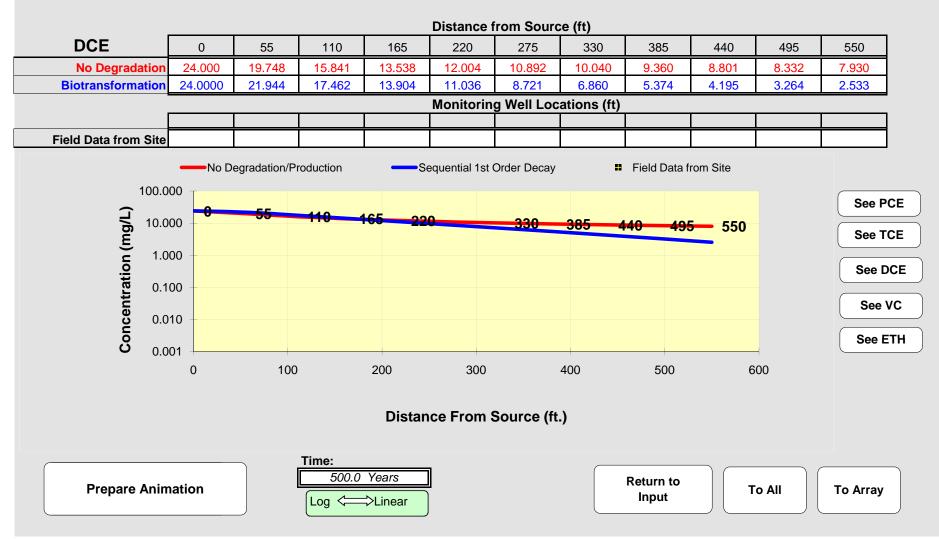


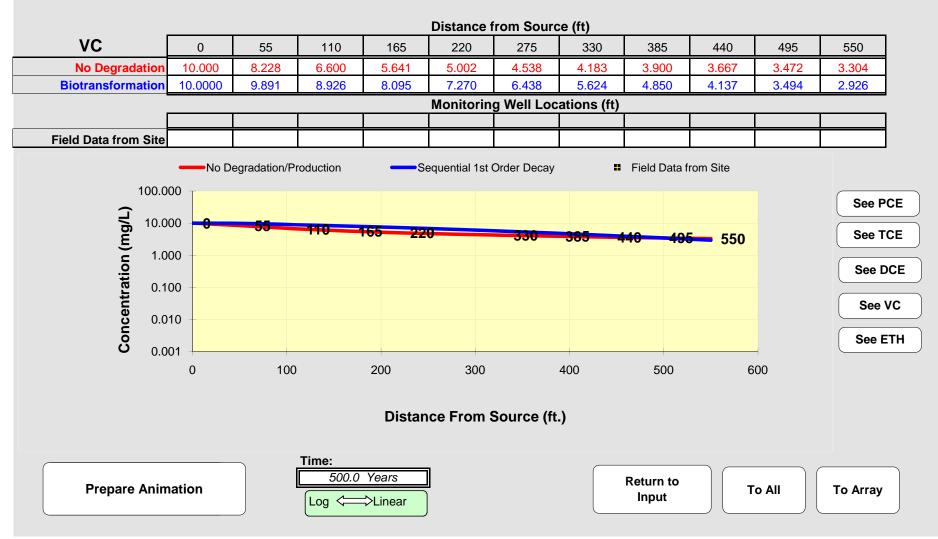




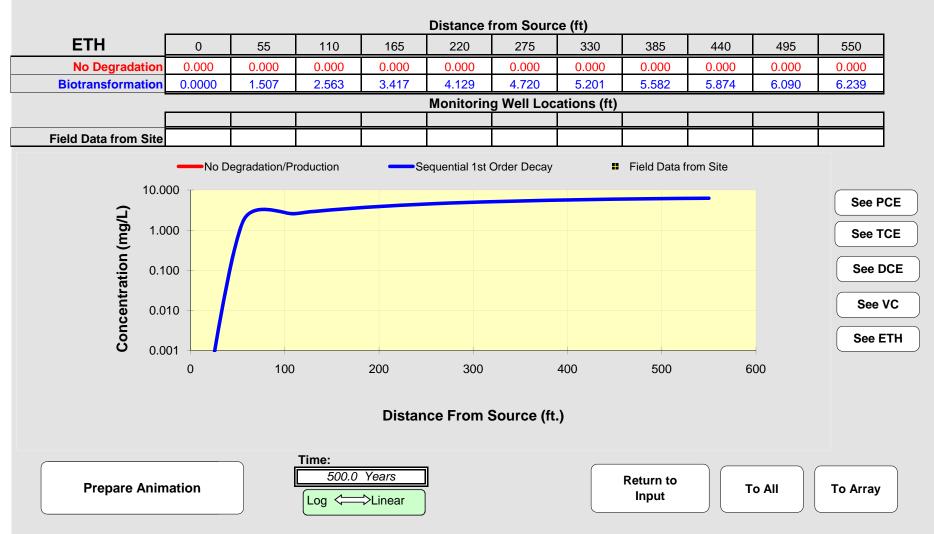





#### Simulated Ethene Concentrations "Source Area" 3: MW-5, MW-6, BDC-6-WT; 1500 feet from Slip 2



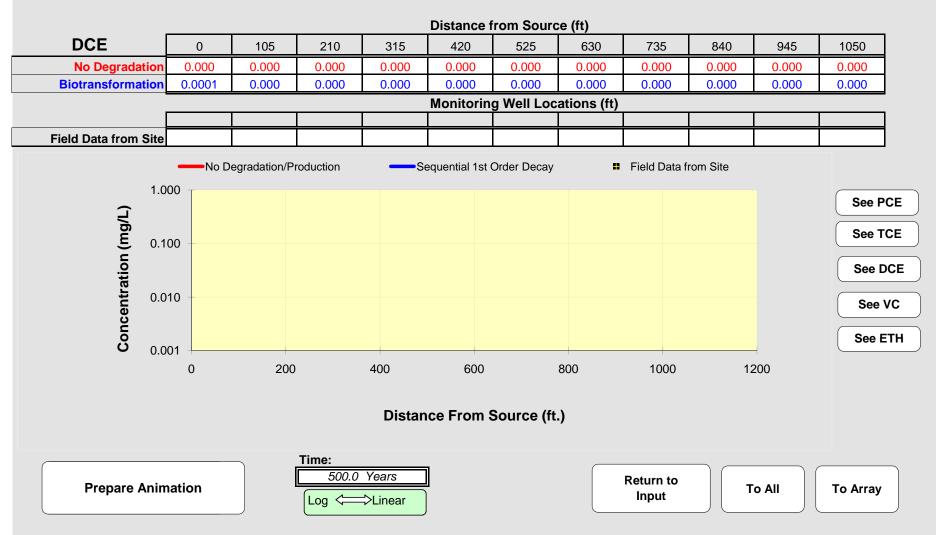

#### BIOCHLOR Model Inputs Shallow Zone "Source Area" 1 Near Wells CI-12-30 and CI-14-35 Approx. 550 feet from Duwamish (Slip 2)



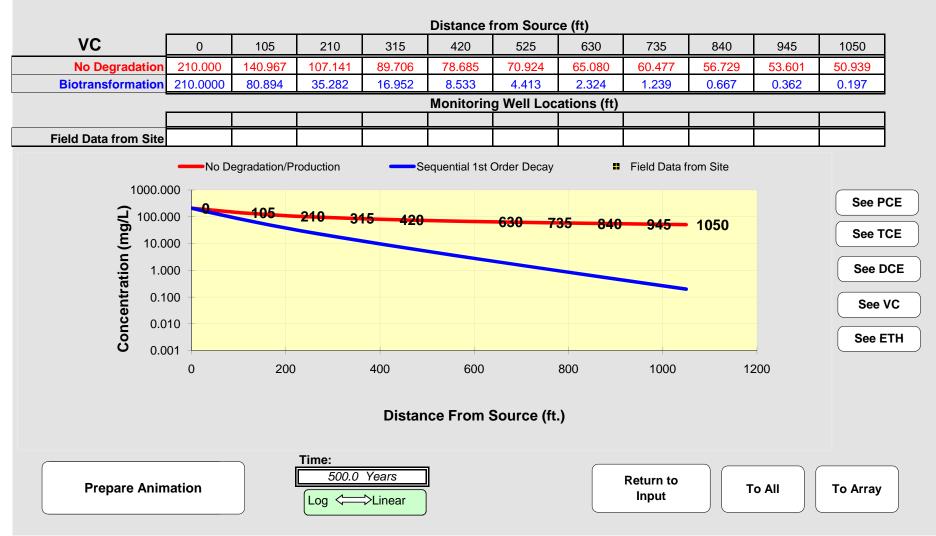




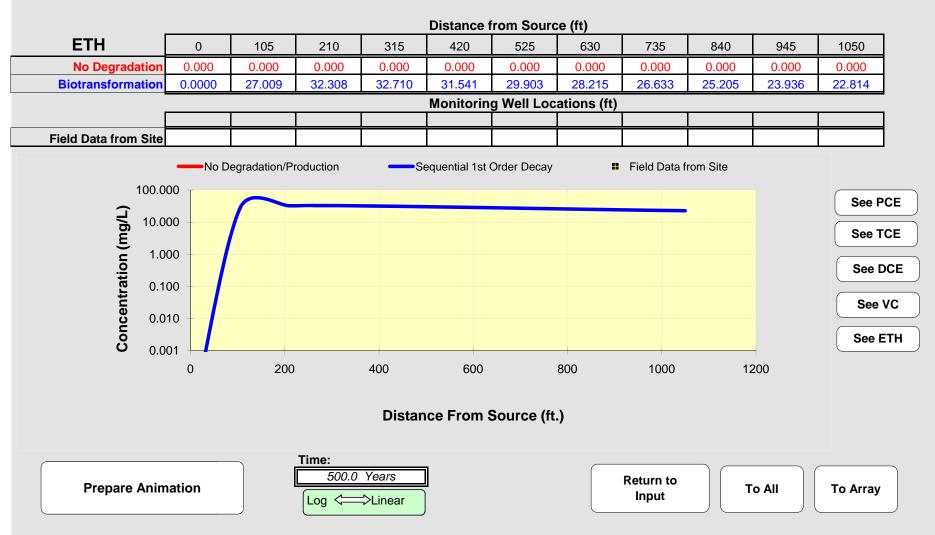






## BIOCHLOR Model Inputs Shallow Zone "Source Area" 2 Near Well CG-141-40 Approx. 1050 feet from Duwamish (Slip 2)

| <b>BIOCHLOR Natural</b>               | Attenuation         | <b>Decision Sup</b>                   | port System         Capital Industries         Data Input Instructions:                             |
|---------------------------------------|---------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                       |                     |                                       | Version 2.2 Shallow Zone 115 -1. Enter value directlyor                                             |
|                                       |                     |                                       | Excel 2000 Source Area 2 (1050' from Waterway) 🔨 or 2. Calculate by filling in gray                 |
| TYPE OF CHLORINATED SC                | OLVENT:             | Ethenes 🔍                             | 5. GENERAL 0.02 cells. Press Enter, then C                                                          |
|                                       |                     | Ethanes O                             | Simulation Time* 500 (yr)                                                                           |
| 1. ADVECTION                          |                     |                                       | Modeled Area Width* 500 (ft) $_{\rm W}$ $\sim$ Variable* $\rightarrow$ Data used directly in model. |
| Seepage Velocity*                     | Vs                  | 66.2 (ft/yr                           | Modeled Area Length* 1050 (ft)                                                                      |
| or                                    |                     | ▲ ((a)))                              | Zone 1 Length* 1050 (ft) Biotransformation Natural Alternation                                      |
| Hydraulic Conductivity                | К                   | 9.99E-03 (cm/s                        | (ec) Zone 2 Length* $0$ (ft) Zone 2= is Occurring $\rightarrow$ Screening Protocol                  |
| Hydraulic Gradient                    | i                   | 0.0016 (ft/ft)                        | L - Zone 1                                                                                          |
| Effective Porosity                    | n                   | 0.25 (-)                              | 6. SOURCE DATA TYPE: Continuous / Vertical Plane Source: Determine Source Well                      |
| 2. DISPERSION                         |                     |                                       | Source Options Single Planar / Location and Input Solvent Concentrations                            |
| Alpha x*                              | 31.2 (ft)           | Calc.                                 |                                                                                                     |
| (Alpha y) / (Alpha x)*                | 0.1 (-)             | Alpha x                               | Source Thickness in Sat. Zone* 20 (ft)                                                              |
| (Alpha z) / (Alpha x)*                | 1.E-99 (-)          |                                       | Y1                                                                                                  |
| 3. ADSORPTION                         |                     |                                       | Width* (ft) 50                                                                                      |
| Retardation Factor*                   |                     | —→ R                                  | ks*                                                                                                 |
| or                                    |                     |                                       | Conc. (ug/L)* C1 (1/yr)                                                                             |
| Soil Bulk Density, rho                | 1.51 (kg/L)         | )                                     | PCE .0 0                                                                                            |
| FractionOrganicCarbon, foc            | 2.2E-3 (-)          |                                       | TCE 0 View of Plume Looking Down                                                                    |
| Partition Coefficient                 | Koc 🎽               | · · · · · · · · · · · · · · · · · · · | DCE 0 0 /                                                                                           |
| PCE                                   | 265 (L/kg)          |                                       | VC 210.0 0 Observed Centerline Conc. at Monitoring Wells                                            |
| TCE                                   | 94 (L/kg)           |                                       | ETH 0/                                                                                              |
| DCE                                   | 36 (L/kg)           |                                       |                                                                                                     |
| VC                                    | 19 (L/kg)           |                                       | 7. FIELD DATA FOR COMPARISON                                                                        |
| ETH                                   | 302 (L/kg)          |                                       | PCE Conc. (mg/L)                                                                                    |
|                                       | used in model)*     |                                       | TCE Conc. (mg/L)                                                                                    |
| 4. BIOTRANSFORMATION                  | -1st Order Deca     | -                                     | DCE Conc. (mg/L)                                                                                    |
| Zone 1 $\frown$ PCE $\rightarrow$ TCE | λ (1/yr)<br>0.578 ← | half-life (yrs) Yield<br>1.20 0.79    | VC Conc. (mg/L)                                                                                     |
| $TCE \rightarrow DCE$                 | 0.385               | 1.80 0.74                             | Distance from Source (ft)                                                                           |
| $DCE \rightarrow VC$                  | 0.433               | 1.60 0.74                             | Date Data Collected                                                                                 |
| $VC \rightarrow ETH$                  | 0.408               | 1.70 0.45                             | 8. CHOOSE TYPE OF OUTPUT TO SEE:                                                                    |
| Zone 2                                | λ (1/yr)            | half-life (yrs)                       |                                                                                                     |
| PCE   TCE                             | $0.000 \leftarrow$  |                                       | RESE RESE                                                                                           |
| $TCE \rightarrow DCE$                 | 0.000               | HEL                                   | P RUN CENTERLINE RUN ARRAY                                                                          |
| $DCE \rightarrow VC$                  | 0.000               |                                       | Paste                                                                                               |
| $VC \rightarrow ETH$                  | 0.000 ←             |                                       | Example                                                                                             |
| VC -> ETH                             | 0.000 ←             |                                       | Example                                                                                             |



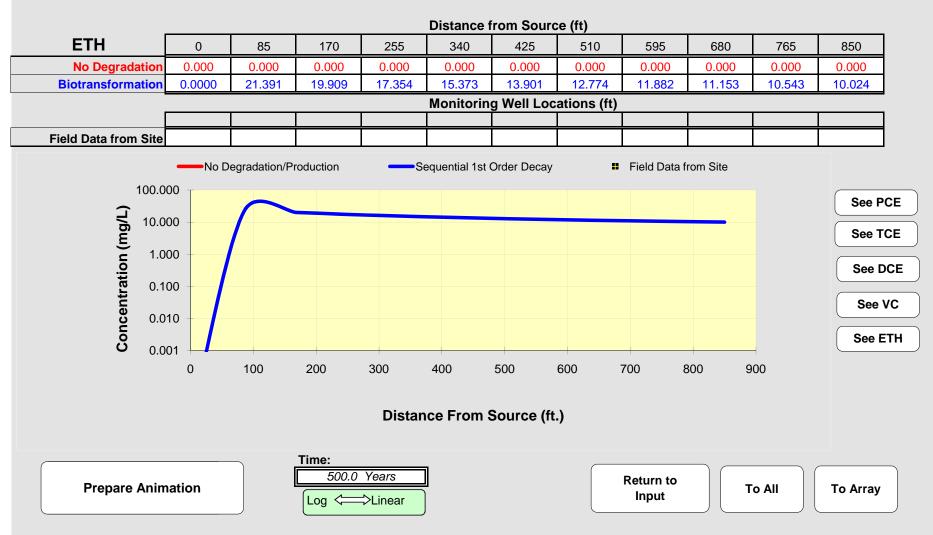






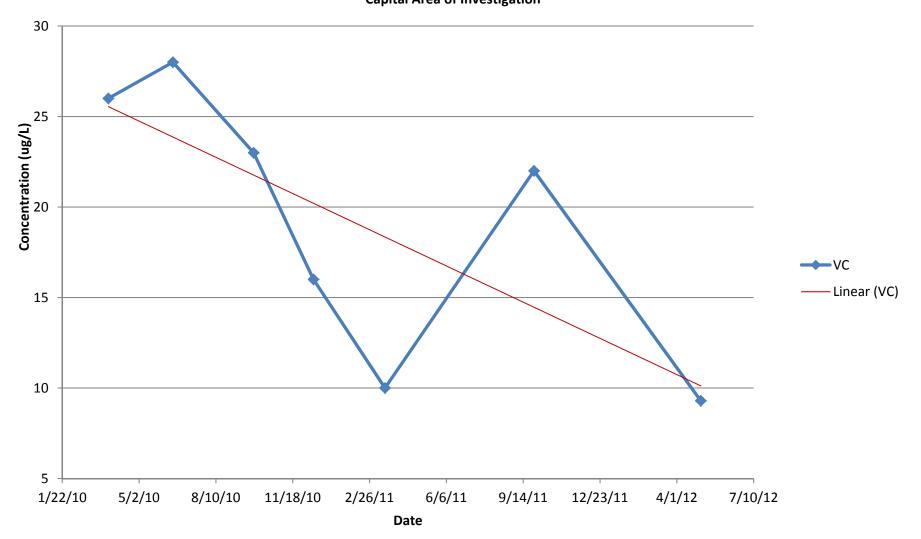






## BIOCHLOR Model Inputs Intermediate Zone "Source Area" Near Well CI-15-60 Approx. 850 feet from Duwamish (Slip 2)

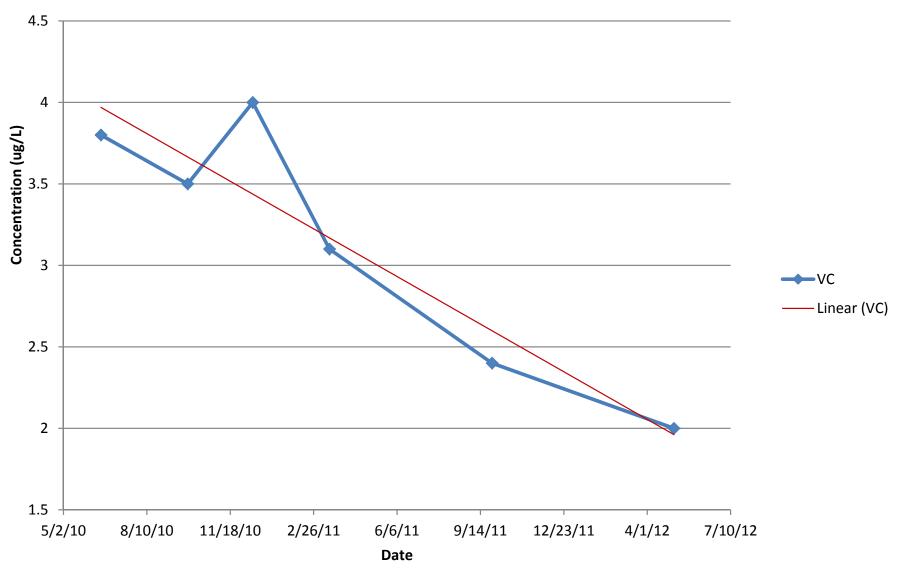
| <b>BIOCHLOR Natural</b>                                  | Attenuation                              | <b>Decision Supp</b>                  | ort System                 | Capital Industries Data Input Instructions:                             |
|----------------------------------------------------------|------------------------------------------|---------------------------------------|----------------------------|-------------------------------------------------------------------------|
|                                                          |                                          |                                       | Version 2.2                | Intermediate Zone 115 -1. Enter value directlyor                        |
|                                                          |                                          |                                       | Excel 2000                 | Source Area 1 (850' from Waterway) 🔨 or 2. Calculate by filling in gray |
| TYPE OF CHLORINATED SC                                   | OLVENT:                                  | Ethenes 🔍                             | 5. GENERAL                 | 0.02 cells. Press Enter, then C                                         |
|                                                          |                                          | Ethanes O                             | Simulation Time*           | 500 (yr) L (To restore formulas, hit "Restore Formulas" button )        |
| 1. ADVECTION                                             |                                          |                                       | Modeled Area Width*        | 500 (ft) W $\sim$ Variable* $\rightarrow$ Data used directly in model.  |
| Seepage Velocity*                                        | Vs                                       | 13.9 (ft/yr)                          | Modeled Area Length*       | 850 (ff) Test if                                                        |
| or                                                       |                                          | ↑<br>(··)                             | Zone 1 Length*             | 850 (ft) Biotransformation                                              |
| Hydraulic Conductivity                                   | К                                        | 2.10E-03 (cm/sec                      | ) Zone 2 Length*           | 0 (ft) Zone 2= is Occurring - Screening Protocol                        |
| Hydraulic Gradient                                       | i                                        | 0.0016 (ft/ft)                        | , U                        | L - Zone 1                                                              |
| Effective Porosity                                       | n                                        | 0.25 (-)                              | 6. SOURCE DATA             | TYPE: Continuous / Vertical Plane Source: Determine Source Well         |
| 2. DISPERSION                                            |                                          |                                       | Source Options             | Single Planar / Location and Input Solvent Concentrations               |
| Alpha x*                                                 | 31.2 (ft)                                | Calc.                                 |                            |                                                                         |
| (Alpha y) / (Alpha x)*                                   | 0.1 (-)                                  | Alpha x                               | Source Thickness in Sat. Z | lone* 20 (ft)                                                           |
| (Alpha z) / (Alpha x)*                                   | 1.E-99 (-)                               |                                       | <u>Y1</u>                  |                                                                         |
| 3. ADSORPTION                                            |                                          |                                       | Width* (ft) 50             |                                                                         |
| Retardation Factor*                                      |                                          | —▶ R                                  |                            | ks*                                                                     |
| or                                                       |                                          |                                       | Conc. (ug/L)* C1           | (1/yr)                                                                  |
| Soil Bulk Density, rho                                   | 1.51 (kg/L)                              |                                       | PCE .0                     | 0                                                                       |
| FractionOrganicCarbon, foc                               | 2.5E-3 (-)                               | 1                                     | TCE .0                     | 0 / View of Plume Looking Down                                          |
| Partition Coefficient                                    | Koc 🎽                                    | · · · · · · · · · · · · · · · · · · · | DCE .0                     | 0 / /                                                                   |
| PCE                                                      | 265 (L/kg)                               |                                       | VC 83.0                    | 0 / Observed Centerline Conc. at Monitoring Wells                       |
| TCE                                                      | 94 (L/kg)                                |                                       | ETH                        | 0 / /                                                                   |
| DCE                                                      | 36 (L/kg)                                |                                       |                            |                                                                         |
| VC                                                       | 19 (L/kg)                                |                                       | 7. FIELD DATA FOR COMP     | ARISON / /                                                              |
| ETH                                                      | 302 (L/kg)                               |                                       | PCE Conc. (mg/L)           |                                                                         |
|                                                          | used in model)*                          |                                       | TCE Conc. (mg/L)           |                                                                         |
| 4. BIOTRANSFORMATION                                     | -1st Order Deca                          | •                                     | DCE Conc. (mg/L)           |                                                                         |
|                                                          | λ (1/yr)                                 | half-life (yrs) Yield                 | VC Conc. (mg/L)            |                                                                         |
| PCE  TCE                                                 | 0.578                                    | 1.20 0.79                             | ETH Conc. (mg/L)           |                                                                         |
| $TCE \rightarrow DCE$                                    | 0.385                                    | 1.80 0.74                             | Distance from Source (ft)  |                                                                         |
| DCE -> VC                                                | 0.433 <del>(</del><br>0.408 <del>(</del> | 1.60 0.64                             | Date Data Collected        |                                                                         |
| VC                                                       |                                          | 1.70 0.45                             | 8. CHOOSE TYPE OF OUT      |                                                                         |
| Zone 2<br>PCE → TCE                                      | λ (1/yr)                                 | half-life (yrs)                       |                            | Help Restore Formulas RESET                                             |
| · · · · · · · · · · · · · · · · · · ·                    | 0.000 ←                                  |                                       | RUN CENTERLINE             | RUN ARRAY                                                               |
| $\begin{array}{c} TCE \to DCE \\ DCE \to VC \end{array}$ |                                          |                                       |                            |                                                                         |
| $VC \rightarrow ETH$                                     | 0.000                                    |                                       |                            | SEE OUTPUT Example                                                      |
|                                                          | 0.000                                    |                                       |                            |                                                                         |







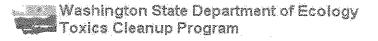




# Vinyl Chloride Concentration in Cl-12-30 Shallow Zone - Source Area 1

Capital Area of Investigation



Vinyl Chloride Concentration in CI-14-35 Shallow Zone - Source Area 1


**Capital Area of Investigation** 

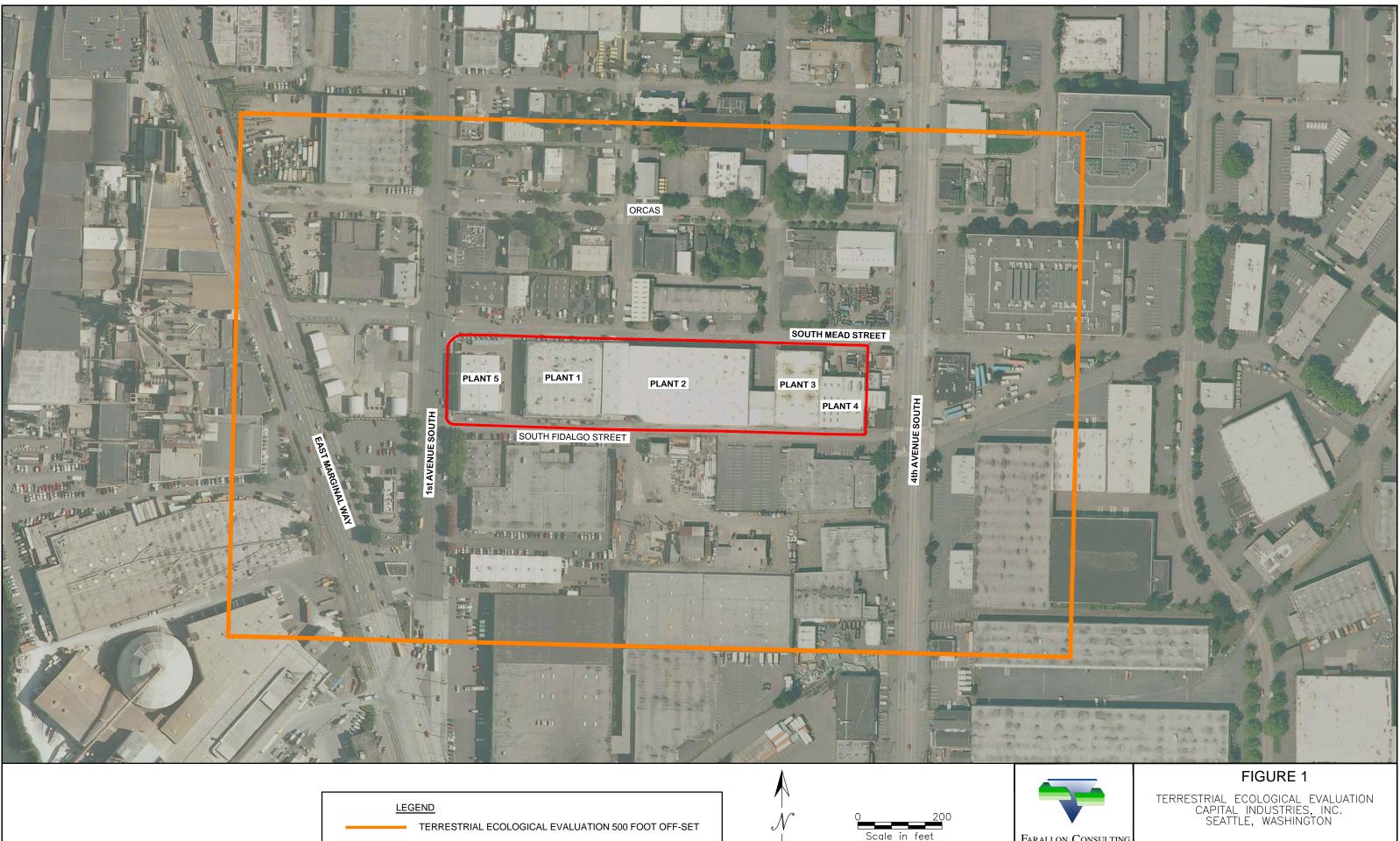


# APPENDIX I TERRESTRIAL ECOLOGICAL EVALUATION EXCLUSION

REVISED DRAFT REMEDIAL INVESTIGATION REPORT Capital Industries, Inc. 5801 3rd Avenue South Seattle, Washington

Farallon PN: 457-004




# **Terrestrial Ecological Evaluation Process - Primary Exclusions**

# **Documentation Form**

| Exclusion<br># | Exclusion Detail                                                                                                                                                                                                                                                      | Yes or No? | Are Institutional<br>Controls Required If<br>The Exclusion<br>Applies? |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------|
|                | Will soil contamination be located at<br>least 6 feet beneath the ground surface<br>and less than 15 feet?                                                                                                                                                            | Yes / No   | Yes                                                                    |
| J.             | Will soil contamination located at<br>least 15 feet beneath the ground<br>surface?                                                                                                                                                                                    | Yes / No   | No                                                                     |
|                | Will soil contamination located below the conditional point of compliance?                                                                                                                                                                                            | Yes / No   | Yes                                                                    |
| 2              | Will soil contamination be covered by<br>buildings, paved roads, pavement, or<br>other physical barriers that will<br>prevent plants or wildlife from being<br>exposed?                                                                                               | Yes/No     | Yes                                                                    |
|                | Is there less than 1.5 acres of<br>contiguous undeveloped land on the<br>site, or within 500 feet of any area of<br>the site affected by hazardous<br>substances <b>other than</b> those listed in<br>the table of <u>Hazardous Substances of</u><br><u>Concern</u> ? | Yes/No     |                                                                        |
| 3              | And<br>Is there less than 0.25 acres of<br><u>contiguous undeveloped land</u> on or<br>within 500 feet of any area of the site<br>affected by hazardous substances<br><b>listed in</b> the table of <u>Hazardous</u><br><u>Substances of Concern</u> ?                | Yes / No   | Other factors determine                                                |
| 4              | Are concentrations of hazardous<br>substances in the soil less than or<br>equal to natural background<br>concentrations of those substances at<br>the point of compliance                                                                                             | Yes / No   | No                                                                     |

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493]

[TEE Home]



Scale in feet

FARALLON CONSULTING 975 5th Avenue Northwest Issaquah, WA 98027

| juah, WA 98027 |         | FARALLON PN: 457-004 |              |      |                  |  |  |
|----------------|---------|----------------------|--------------|------|------------------|--|--|
| By:DEW         | Checkec | By:AF                | Date:10/4/12 | Disk | Reference:AERAIL |  |  |