DRAFT – Issued for Agency Review

VAPOR INTRUSION MITIGATION MEASURES STATUS REPORT

PACIFIC FOOD SYSTEMS, INC. NORTH BUILDING 5815 FOURTH AVENUE SOUTH SEATTLE, WASHINGTON

AGREED ORDER NO. DE 10402

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 457-007

For:

Mr. Ron Taylor Capital Industries, Inc. 5801 Third Avenue South Seattle, Washington

August 2017

Prepared by:

Russell Luiten, P.E. Project Engineer

Reviewed by:

Jeffrey Kaspar, L.G., L.H.G. Principal Geologist

TABLE OF CONTENTS

ONYM	IS AND ABBREVIATIONS	iii
INTF	RODUCTION	
1.1	VIMM REPORT PURPOSE	1-1
1.2	VAPOR INTRUSION MITIGATION MEASURES STATUS	
	REPORT ORGANIZATION	1-1
SITE	DESCRIPTION AND SYSTEM DESIGN	2-1
2.1	SITE DESCRIPTION	2-1
2.2	BACKGROUND	
VAP	OR INTRUSION MITIGATION MEASURES	
3.1	VAPOR INTRUSION MITIGATION DESIGN PLAN	
3.2	SSDS DIAGNOSTIC TESTING	
3.3	SSDS INSTALLATION DETAILS	
INSP	ECTION, MONITORING, AND MAINTENANCE	
CEDUI	RES	
4.1	INSPECTION AND MONITORING	
	4.1.1 Tenant Inspections	4-1
	4.1.2 Annual Inspections	
	4.1.3 Pressure Field Extension Monitoring	4-3
	4.1.4 Air Quality Monitoring	4-3
4.2	SYSTEM RE-EVALUATION AND ENHANCEMENT	4-4
4.3	SYSTEM MAINTENANCE	
INSP	PECTION, MONITORING, AND MAINTENANCE RESULTS	5-1
5.1	INSPECTION, MONITORING, AND MAINTENANCE	
	ACTIVITIES	5-1
5.2	INSPECTION, MONITORING, AND MAINTENANCE	
	RESULTS	5-3
CON	CLUSIONS	6-1
PLA	NNED WORK	7-1
RIRI	JOGRAPHY	8-1
	 DNYM INTH 1.1 1.2 SITE 2.1 2.2 VAP 3.1 3.2 3.3 INSP CEDUJ 4.1 4.2 4.3 INSP 5.1 5.2 CON PLA BIBI 	DNYMS AND ABBREVIATIONS INTRODUCTION 1.1 VIMM REPORT PURPOSE 1.2 VAPOR INTRUSION MITIGATION MEASURES STATUS REPORT ORGANIZATION SITE DESCRIPTION AND SYSTEM DESIGN 2.1 SITE DESCRIPTION AND SYSTEM DESIGN 2.2 BACKGROUND 2.1 SITE DESCRIPTION MITIGATION MEASURES 2.1 SITE DESCRIPTION 2.2 BACKGROUND 3.1 VAPOR INTRUSION MITIGATION MEASURES 3.1 VAPOR INTRUSION MITIGATION DESIGN PLAN 3.2 SSDS DIAGNOSTIC TESTING 3.3 SSDS INSTALLATION DETAILS INSPECTION, MONITORING, AND MAINTENANCE EDURES 4.1 4.1 Tenant Inspections 4.1.2 Annual Inspections 4.1.3 Pressure Field Extension Monitoring 4.1.4 Air Quality Monitoring 4.2 SYSTEM RE-EVALUATION AND ENHANCEMENT 4.3 SYSTEM MAINTENANCE 5.1 INSPECTION, MONITORING, AND MAINTENANCE RESULTS 5.1 INSPECTION, MONITORING, AND MAINTENANCE ACTIVITIES 5.2 5.2 INSPECTION, MONITORING, AND MAINTENANCE </td

FIGURES

Figure 1 Vicinity Map

- Figure 2 Site Plan Showing Vapor Intrusion, Air Quality Sampling Buildings
- Figure 3 Air Quality Monitoring Locations
- Figure 4: PCE and TCE Air Quality Monitoring Trends
- Figure 5: Air Quality Monitoring Trends: PCE
- Figure 6: Air Quality Monitoring Trends: TCE

TABLES

- Table 1
 Summary of Air Quality Monitoring Parameters
- Table 2SSDS Operations Parameters
- Table 3
 Summary of Air Quality Monitoring Results

APPENDICES

- Appendix A Subslab Depressurization System As-Built Schematics
- Appendix B Photographs
- Appendix C City of Seattle Electrical Permit
- Appendix D Subslab Depressurization System Inspection Forms
- Appendix E Laboratory Analytical Reports

ACRONYMS AND ABBREVIATIONS

Agreed Order	Agreed Order No. DE 5348 entered into by the Washington State Department of Ecology and Capital Industries, Inc. on January 24, 2008
Building	Pacific Food Systems, Inc. North Building at 5815 Fourth Avenue South in Seattle, Washington
Capital	Capital Industries, Inc.
COCs	constituents of concern
Ecology	Washington State Department of Ecology
Farallon	Farallon Consulting, L.L.C.
HVOC	halogenated volatile organic compound
IOW	inches of water
IPIMAL	Inhalation Pathway Interim Measures Action Level
$\mu g/m^3$	micrograms per cubic meter
PCE	tetrachloroethene
PFE	pressure field extension
PSCAA	Puget Sound Clean Air Agency
SCFM	standard cubic feet per minute
SSDS	subslab depressurization system
TCE	trichloroethene
VI	vapor intrusion
VIAMM	<i>Revised Vapor Intrusion Assessment, Monitoring, and Mitigation Plan, W4 Joint Deliverable, Seattle, Washington</i> dated February 2, 2015 prepared by Farallon Consulting, L.L.C.
VIIMM Work Plan	Vapor Intrusion, Inspection, Monitoring, and Maintenance Work Plan, Pacific Seafoods, 5815 Fourth Avenue South – North Building, Seattle, Washington dated November 2015 prepared by Farallon Consulting, L.L.C.
VIM Design Plan	Vapor Intrusion Mitigation Design Plan, 5815 4 th Avenue South – North Building, Seattle, Washington dated November 10, 2014 prepared by Farallon Consulting, L.L.C.
VIMM Report	Vapor Intrusion Mitigation Measures Status Report, Pacific Food Systems, Inc. North Building, 5815 Fourth Avenue South, Seattle, Washington dated August 2017 prepared by Farallon Consulting, L.L.C. (this report)

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this Vapor Intrusion Mitigation Measures Status Report (VIMM Report) on behalf of Capital Industries, Inc. (Capital) to present the details of the subslab depressurization system (SSDS) installation and monitoring conducted between February 2015 and July 2017 at the Pacific Food Systems, Inc. North Building at 5815 Fourth Avenue South in Seattle, Washington (herein referred to as the Building) (Figure 1). The location of the Building relative to Capital property is shown on Figure 2.

Mitigation of vapor intrusion (VI) from volatile constituents of concern (COCs) at the Building was required by the Washington State Department of Ecology (Ecology) in accordance with Exhibits B and D of Agreed Order No. DE 5348 entered into by Ecology and Capital on January 24, 2008 (Agreed Order) and with the *Revised Vapor Intrusion Assessment, Monitoring, and Mitigation Plan, W4 Joint Deliverable, Seattle, Washington* dated February 2, 2015, prepared by Farallon (2015) (VIAMM) under Agreed Order No. DE 10402 entered into by Ecology and the West of 4th Group. VI mitigation design specifications were developed in accordance with the *Vapor Intrusion Mitigation Design Plan, 5815 4th Avenue South – North Building, Seattle, Washington* dated November 10, 2014 prepared by Farallon (2014d) (VIM Design Plan). The need for VI mitigation was based on results from the Tier 3 Vapor Intrusion Assessment Report, 5815 4th Avenue South–North Building, Seattle Washington dated August 20, 2014.

1.1 VIMM REPORT PURPOSE

The purpose of this VIMM Report is to provide a summary of the bases for the VI mitigation measures, procedures, and details relating to the SSDS installation and monitoring conducted at the Building between February 2015 and July 2017.

1.2 VAPOR INTRUSION MITIGATION MEASURES STATUS REPORT ORGANIZATION

The VIMM Report is organized as follows:

• Section 1, Introduction, presents the VIMM Report purpose.

- Section 2, Site Description and System Design, provides a description of the Capital Area of Investigation, a summary of the Building background, and a description of the VI mitigation design plan.
- Section 3, VI Mitigation Measures, provided the details of SSDS installation and operation.
- Section 4, Inspection, Monitoring, and Maintenance Procedures, discusses the procedures used for SSDS inspection, monitoring, and maintenance.
- Section 5, Inspection, Monitoring, and Maintenance Results, discusses the results from the SSDS inspection, monitoring, and maintenance activities conducted at the Building.
- Section 6, Conclusions, presents Farallon's conclusions regarding the SSDS monitoring and performance air sampling results.
- Section 7, Planned Work, discusses work planned for the remainder of 2017, and for 2018.
- Section 8, Bibliography, provides a list of the documents used in preparation of this VIMM Report.

2.0 SITE DESCRIPTION AND SYSTEM DESIGN

This section provides a description of the Capital Area of Investigation within which the Building is located, a summary of the Building background, including a discussion of the basis for the VI mitigation design plan and SSDS.

2.1 SITE DESCRIPTION

The Capital property is at 5801 Third Avenue South between South Mead Street to the north and South Fidalgo Street to the south, and between Fourth Avenue South to the east and First Avenue South to the west in Section 39, Township 24 South, Range 4 East in Seattle, King County, Washington (Figure 2). Capital is a source of halogenated volatile organic compounds (HVOCs) in the subsurface with the potential to result in a VI condition at the Capital property and at buildings within the Capital Area of Investigation. The Capital Area of Investigation initially was defined in the *Remedial Investigation Work Plan, Capital Industries, Inc., 5801 Third Avenue South, Seattle, Washington* dated September 16, 2008 prepared by Farallon (2008a), and revised in the *Revised Draft Remedial Investigation Report, 5901 4th Avenue South, Seattle, Washington* dated October 2012 prepared by Farallon (2012) as the area where concentrations of HVOCs associated with confirmed or suspected source areas at the Capital property exceed screening levels (Figure 2). The Capital Area of Investigation is within Seattle city limits in King County, Washington (2007) in an area zoned for industrial light manufacturing. Properties within the Capital Area of Investigation include a mixture of light industrial, commercial, and residential properties.

The Building is located within the Capital Area of Investigation, east of Capital Plant 4 (Figure 2), and is used by Pacific Food Systems, Inc. for warehouse storage and equipment maintenance.

2.2 BACKGROUND

The volatile HVOCs tetrachloroethene (PCE), trichloroethene (TCE), and/or cis-1,2-dichloroethene were detected at concentrations exceeding the preliminary cleanup standards used to evaluate VI risk in two subslab soil gas samples collected at the Building in April 2011. The standards used to evaluate VI risk were set forth in the *Revised Inhalation Pathway*

Interim Measures Work Plan prepared by Philip Services Corporation (2002); the Draft Interim Vapor Intrusion Plan prepared by Arrow Environmental et al. (2007), which is Exhibit D of the Agreed Order; and the Updated Air and Groundwater IPIMALs [Inhalation Pathway Interim Measures Action Levels]/VIRLs [Vapor Intrusion Remediation Levels] for Residential and Commercial Scenarios for the Georgetown Site prepared by Pioneer Technologies Corporation (2012). The subslab sample results indicated the potential for VI into the Building, and warranted indoor air analysis to further evaluate whether a VI risk exists.

The results from the assessment of indoor and outdoor ambient air conducted between 2012 and 2014 indicated that a source of volatile COCs in the subsurface was resulting in a VI condition for the Building. Results from indoor air sampling events have remained relatively consistent despite sealing the core holes in the floor slab and eliminating the contribution of COCs from potential sources in the Building.

Concentrations of TCE detected in indoor air samples have consistently exceeded the preliminary cleanup level of 1.5 micrograms per cubic meter ($\mu g/m^3$) for a carcinogenic compound. Due to the association of the TCE source with a release of HVOCs beneath or proximate to the Building with no apparent contributing operational source in the Building, Tier 4 mitigation measures were implemented in 2015.

3.0 VAPOR INTRUSION MITIGATION MEASURES

An SSDS to mitigate vapor intrusion in the Building was designed in accordance with the specifications defined in the VIM Design Plan and ASTM 2121-13. Installation of the SSDS in the Building was completed in March 2015. The basis for the SSDS design, installation details, and monitoring procedures are discussed below. As-built schematics for the SSDS installed in the Building are provided in Appendix A. Photographs of key system components and installation details, including modifications to the system vent stack, are provided in Appendix B.

3.1 VAPOR INTRUSION MITIGATION DESIGN PLAN

The VIM Design Plan provided the specifications for the SSDS developed by Farallon to mitigate intrusion of volatile COCs that have the potential to migrate from soil and/or water table zone groundwater to indoor ambient air in the Building. The mitigation measures developed are consistent with the Agreed Order. The VIM Design Plan included procedures for collecting SSDS design data; preparing the SSDS design; and installing, implementing, and performance-testing the SSDS.

3.2 SSDS DIAGNOSTIC TESTING

Subslab monitoring ports, extraction sumps, and the piping network for the SSDS were installed by Saybr Contractors, Inc. of Tacoma, Washington on January 20 and 21, 2015. In preparation for diagnostic testing of the SSDS system, cracks wider than 0.125 inch in the Building's concrete slab were cleaned and filled with polyurethane sealant.

Farallon conducted VI mitigation system diagnostic testing of the SSDS at the Building in accordance with the VIM Design Plan on February 10, 2015. The SSDS diagnostic testing was conducted using a 6.0-horsepower wet/dry vacuum connected to the SSDS piping and sump network. Diagnostic testing flow and vacuum was controlled by a combination of a gate valve near the wet-dry vacuum connection point and the SSDS air inlet. A monitoring port was installed in the piping to monitor the static flow and vacuum applied to the SSDS during diagnostic testing.

During the diagnostic testing, four different static vacuum and flow combinations were applied to the SSDS piping and sump network. Subslab differential pressures were monitored at the two subslab monitoring ports for each diagnostic testing static vacuum and flow. The static vacuum and flow was applied to the SSDS piping and sump network until the differential pressures at the subslab monitoring ports stabilized for a minimum of 15 minutes. The location of the subslab monitoring ports and the schematic of the SSDS is presented on Sheet No. 3 in Appendix A.

The SSDS blower was selected based on the VIM Design Plan's pass/fail criteria of a minimum measured negative 0.025 inch of water (IOW) differential pressure at both subslab monitoring ports. The lowest differential pressure measured during the diagnostic testing was 0.078 and 0.038 IOW at subslab monitoring ports SSMP-1 and SSMP-2 respectively, with an SSDS vacuum of 3.8 IOW, and a flow of 17 standard cubic feet per minute (SCFM). The lowest possible measurable flow during the diagnostic testing was 17 SCFM, which restricted the diagnostic test of lower vacuum and flows. Although a flow of 17 SCFM and a vacuum of 3.8 IOW were used to select the SSDS blower, flow and vacuum was not an operating criterion for the SSDS.

3.3 SSDS INSTALLATION DETAILS

The SSDS was designed to maintain negative pressure directly beneath the Building, thereby acting as a "sink" for soil vapors in the vicinity of the Building. The SSDS was designed by Farallon, and installed by Saybr Contractors, Inc. A City of Seattle electrical permit was obtained on March 6, 2015 for the SSDS blower and electrical system installation. A copy of the closed permit and the inspection record is provided in Appendix C. The SSDS began operation on April 1, 2015. Two sump locations were installed for diagnostic testing at the Building. The locations of the two sumps were selected for incorporation in the final SSDS design, and have minimal impact on the Building tenant's operations. Results from the diagnostic testing indicated that the two sump locations connected to one exhaust blower would be adequate for depressurization at the Building. Schematics of the SSDS design and layout are provided in Appendix A.

Two sumps, each consisting of a 6-inch-diameter boring directly above a 7- to 8-gallon subslab cavity, were installed during the diagnostic testing phase. A schematic of each sump location is presented on Sheet No. 4 in Appendix A. Piping and risers connect from each sump to the exhaust blower mounted to the southern side of the Building. Risers are seated on a rubber seal in the sump, sealed with concrete; piping and risers extend from the sump at and below ground level out

the Building's southern exterior wall. The location where the pipe penetrates the Building's wall is sealed with waterproof sealant. Details for the sumps and risers are presented on Sheet No. 4 in Appendix A.

Piping connects the risers to the exhaust blower mounted on the Building's southern exterior wall. Piping, risers, and piping connections are constructed of polyvinyl chloride. The piping forms one network, with the connection to the exhaust blower at the highest point of the network, and the connection to each sump at the lowest point. Piping is angled to prevent water vapor from condensing into pools at low spots in the piping and blocking applied vacuum to the two sumps. The piping schematic and specifications are presented on Sheet No. 3 in Appendix A.

A Rotron DR101Y9M 0.33-horsepower regenerative exhaust blower manufactured by Ametek Technical and Industrial Products provides negative pressure to the sumps via the mitigation system risers and piping. The SSDS blower was selected based on performance capabilities that allow for increased flexibility in the applied vacuums beyond a typical radon-type blower. The exhaust blower is mounted to the Building's southern exterior wall with a shelf. Vibration isolators are used between the exhaust blower and the shelf to prevent vibration and excess noise. The blower is covered by an existing lean-to roof along the southern side of the Building. The location and specifications for the exhaust blower are presented on Sheet No. 3 in Appendix A. The location also is depicted in the photographs in Appendix B.

The exhaust stack is constructed of polyvinyl chloride and mounted to the Building's southern exterior wall. The stack initially extended to a height of approximately 4 feet above the roof level, but was extended to approximately 6 feet above the roof level after evaluation of outdoor air sampling indicated that the exhaust effluent may have been transported downward by ambient outdoor airflow patterns, potentially re-entering the Building. The outdoor air sampling is described in Section 5, Inspection, Monitoring, and Maintenance Results. Stack emissions are directed to the northeast, which is the prevailing downwind direction. The photographs provided in Appendix B show the vent stack modifications, and the roofs at the Capital property and on the Building.

The exhaust stack's emission point is more than 10 feet away from adjacent buildings to the south and west. The exhaust stack outlet is angled and cut on the vertical to prevent precipitation from entering the exhaust stack while still allowing the exhaust stack to exhaust emissions.

A pressure gauge was installed in the SSDS piping network to measure and confirm that negative pressure is being applied throughout the mitigation system. Previously constructed mitigation systems in the area included installation of a manometer to monitor system performance. A Magnehelic pressure gauge rather than a manometer was installed for the SSDS at the Building to monitor SSDS pressure to reduce maintenance requirements for the Building's owner and tenants. A valve system was installed to enable disconnection of pressure gauges during non-monitoring events.

The pressure gauge and valve system were mounted to the piping network with flexible tubing. A main valve was installed between the riser and the pressure gauge to regulate the pressure applied to the gauge from the riser. A relief valve was installed to control the pressure between the first valve and the pressure gauge. The relief valve allows the pressure gauge to be opened to ambient air pressure during non-monitoring events, and relieves the pressure in the tubing after the main valve has been closed. The main valve remains closed and the relief valve remains open during normal operation. During SSDS monitoring events, the main valve is opened and the relief valve is closed to activate the pressure gauge. The pressure gauge provides confirmation that negative pressure is being applied by the exhaust blower to the subsurface via each riser. The negative pressure applied by the exhaust blower does not allow soil gas removed from the subsurface to enter the Building and impact indoor air. Opening the relief valve allows indoor air to enter the tubing, thereby relieving negative pressure remaining in the pressure gauge when it is not in use.

4.0 INSPECTION, MONITORING, AND MAINTENANCE PROCEDURES

This section presents the inspection and monitoring procedures conducted by Capital at the Building, the protocols for evaluating and enhancing SSDS effectiveness, system maintenance, and guidelines to shut down the SSDS. The inspection and monitoring activities were developed based on the *Verification of Depressurization System Effectiveness and Long-Term Operation and Maintenance Plan for Inhalation Pathway Interim Measures* developed for the Philip Services Corporation (2005) Georgetown Facility, and based on the VIAMM. The details of the inspection and monitoring criteria were presented in the *Vapor Intrusion, Inspection, Monitoring, and Maintenance Work Plan, Pacific Seafoods, 5815 Fourth Avenue South – North Building, Seattle, Washington* dated November 2015 prepared by Farallon (2015b) (VIIMM Work Plan). The actual inspection and monitoring schedule conducted between April 2015 and July 2017 has deviated from what was presented in the VIIMM Work Plan due to SSDS modifications and operation adjustments made to optimize SSDS performance in response to performance air quality monitoring results, described in Section 5, Inspection, Monitoring, and Maintenance Results.

4.1 INSPECTION AND MONITORING

Periodic inspection and monitoring is conducted to confirm that the Building SSDS is operating effectively. Inspection and monitoring of the SSDS includes the following:

- General system component inspection;
- Negative pressure field extension (PFE) monitoring;
- Interviewing the tenant contact trained to confirm that the SSDS is operating in accordance with the designated parameters; and
- Periodic air quality monitoring.

4.1.1 Tenant Inspections

Inspections by Building tenants are conducted on a monthly basis at a minimum to ensure that the SSDS is operating properly. Because the Building is used on a daily basis, the manager of shop operations at the Building typically confirms daily that the SSDS is operating by checking the SSDS pressure gauge.

If the SSDS system is not operating properly, the Building tenant contacts Capital and/or Farallon. Contact information for Pacific Food Systems, Inc., Capital, and Farallon is provided below:

JSI Pacific, Inc. dba Pacific Food Systems, Inc. Ms. Inna Guryevsky, Operations Manager 5815 Fourth Avenue South Seattle, Washington 98108 (206) 658-0382

Capital Industries, Inc. Mr. Ray Carr, Plant Manager 5801 Third Avenue South Seattle, Washington 98108 (206) 762-8585

Farallon Consulting, L.L.C.
Mr. Russell Luiten, Project Engineer, or Mr. Jeffrey Kaspar, Project Principal
975 Fifth Avenue Northwest
Issaquah, Washington 98027
(425) 295-0800

4.1.2 Annual Inspections

Annual inspections are conducted to observe and document the condition of the SSDS and to record changes to the Building and surrounding area that could affect SSDS performance. The annual inspection consists of observing and documenting the condition of SSDS components, and any structural changes or modifications to the Building or adjacent buildings or structures, and recording the current SSDS pressure gauge measurement. Previously documented pressure gauge measurements are used for comparison during the inspection. Photographs are taken during the inspection if necessary to document any deterioration of materials (e.g., cracks in piping, mounting damage) or other pertinent changes in the condition of the SSDS, the Building structure, or other factors that could impact system operation or effectiveness.

The inspections conducted between April 2015 and July 2017 have been more frequent than annual. The SSDS has been periodically adjusted since review of the initial performance air sampling results obtained in June 2015. Site visits to inspect and optimize SSDS performance are discussed in Section 5, Inspection, Monitoring, and Maintenance Results.

4.1.3 Pressure Field Extension Monitoring

PFE monitoring is conducted at the Building on an annual basis during the heating season to measure the pressure differential across the Building slab while the SSDS is operating. The results from PFE monitoring are used to confirm that the negative pressure field extends to points far removed from the sump locations.

Two permanent subslab monitoring ports were installed in the Building slab during installation of the SSDS. The subslab monitoring ports are flush-mounted to the Building slab, and have a tamper-resistant cap. The subslab monitoring ports are used for PFE monitoring to determine whether a negative subslab pressure exists. A negative pressure of 0.025 IOW column or more at each of the subslab monitoring ports is considered to be sufficient to demonstrate depressurization. The tamper-resistant cap secures the subslab monitoring port closed between PFE monitoring events to maintain the integrity of the depressurization applied by the SSDS. The location and details of the subslab monitoring ports are shown on Sheet Nos. 3 and 4 in Appendix A; the locations also are shown in the photographs in Appendix B.

4.1.4 Air Quality Monitoring

Air quality monitoring is performed at the Building to provide air quality data that can be:

- Directly compared with previous VI Assessment data to evaluate the reduction in volatile COCs due to operation of the SSDS;
- Used to adjust SSDS operation parameters and reduce concentrations of volatile COCs to less that VIAMM action levels, or applicable air action levels established during the future cleanup action; and
- Used to evaluate whether further action is necessary to protect human health.

Air quality monitoring typically is conducted semiannually in accordance with the VIIMM Work Plan. Initial indoor air sampling results for June 2015 indicated that volatile COCs remained at concentrations exceeding VIAMM action levels. SSDS operations therefore were modified to increase the applied vacuum. Optimization of the SSDS and modifications to vent stack height consequently necessitated more-frequent air quality monitoring during this reporting period. Once the SSDS has been optimized, air quality monitoring will be conducted in accordance with the criteria set forth in the VIIMM Work Plan.

Air samples collected during this reporting period were collected at the approximate sampling locations used during previous investigations/sampling events using 6-liter Summa canisters with flow controllers set to collect a sample over an 8-hour duration. The indoor and outdoor air samples were analyzed for volatile COCs by U.S. Environmental Protection Agency Method TO-15 SIM. All sampling was performed in general accordance with the standard operating procedures established during completion of the Tier 3 VI Assessments (Farallon 2013) and the VIAMM.

4.2 SYSTEM RE-EVALUATION AND ENHANCEMENT

The results from the air quality, PFE, groundwater monitoring, and/or annual inspections are evaluated to determine whether modifications to the SSDS are necessary. The SSDS is re-evaluated or modified to enhance effectiveness as warranted based on inspection and monitoring results. The following criteria are used to determine whether re-evaluation of the SSDS is warranted:

- Inspection results indicate a significant structural change in the Building (e.g., remodeling that could introduce additional pathways for vapor intrusion);
- Air quality monitoring results indicate an indoor air IPIMAL exceedance; and/or
- Groundwater sampling analytical results indicate a minimum tenfold increase in cumulative VI risk/hazard in the vicinity of the Building, as defined in the VIAMM.

During this reporting period, both the indoor and outdoor air quality monitoring results mandated changes in SSDS configuration and operation. These details are provided in Section 5, Inspection, Monitoring, and Maintenance Results.

4.3 SYSTEM MAINTENANCE

After the first year of operation, SSDS maintenance was performed as needed based on conditions observed during system optimization visits. Although maintenance was not required, typical target maintenance items are described below.

Components that may require maintenance include the exhaust blower, the pressure gauge, and piping. The exhaust blower is not amenable to periodic maintenance, and is relatively easy to replace. Therefore, the blower will be operated until excessive noise, vibration, or significantly reduced pressure-gauge readings are noted, at which point the blower will be repaired or replaced. An operational failure of the blower would be indicated by the pressure gauge, which is checked during monthly tenant inspections and annual inspections.

Pressure gauges are less robust than manometers over continued use, and may fail after prolonged use. An additional monitoring port was installed on the main riser to monitor SSDS pressure and flow during annual inspections. SSDS pressure measurements collected during annual inspections will be compared to the SSDS pressure gauge readings. The SSDS pressure gauge will be replaced when a measured reading deviates from the monitored SSDS pressure by more than 25 percent. If pressure gauge failure is confirmed, a replacement pressure gauge will be installed and tested.

Replacement of cracked or otherwise damaged system piping observed during annual inspections or identified by the building tenant may be required.

5.0 INSPECTION, MONITORING, AND MAINTENANCE RESULTS

SSDS start-up occurred on April 1, 2015. The SSDS was started with the air inlet fully closed, resulting in a system vacuum of 6.8 IOW and a total flow of 19.7 SCFM. With the SSDS air inlet closed, differential pressures measured at the subslab monitoring ports were 0.117 IOW at subslab monitoring port SSMP-1, and 0.061 IOW at subslab monitoring port SSMP-2. The SSDS was initially optimized to prolong the operational life of the exhaust blower and minimize power consumption, while still depressurizing the area beneath the Building slab to mitigate volatile COCs from impacting air quality in the Building. The SSDS was optimized by adjusting the vacuum to 1.9 IOW, and the flow to less than 12.9 SCFM. The resulting differential pressure was 0.025 IOW at subslab monitoring port SSMP-1, and 0.007 IOW at subslab monitoring port SSMP-2. Operation parameters are summarized in Table 1.

5.1 INSPECTION, MONITORING, AND MAINTENANCE ACTIVITIES

Periodic inspections to monitor the SSDS and adjust operations were conducted on:

- April 1, and October 9, 2015;
- February 5, April 26, and August 31, 2016; and
- January 5 and March 30, 2017.

During each visit, the work elements cited in Section 4, Inspection, Monitoring, and Maintenance Procedures, were monitored and documented. The inspection forms completed for each site visit are provided in Appendix D. The tenant-maintained SSDS monitoring log has not been completed by the tenant.

Air quality monitoring was conducted to evaluate whether the SSDS was reducing HVOCs in indoor air. Sampling events were conducted on:

- June 1 and November 30, 2015;
- April 26 and August 31, 2016; and
- January 5 and March 30, 2017.

Each sampling event included collecting two indoor air samples and one outdoor ambient air sample. The approximate locations of the samples are depicted on Figure 3. Sampling was conducted in general accordance with the procedures described in the VIIMM Work Plan and its supporting documents. Results from the air quality monitoring were used to adjust SSDS operations to optimize system performance. Outdoor ambient air sampling data also were used to evaluate the effectiveness of the exhaust stack in dispersing emissions. The exhaust stack was extended from 4 to 6 feet above the Building roof height, with stack emissions directed in the prevailing downwind direction to the northeast. Air quality monitoring parameters and results are summarized in Tables 2 and 3. The laboratory analytical reports are provided in Appendix E.

The monitoring conducted on April 26 and August 31, 2016; and January 5 and March 30, 2017 also included sampling of the soil gas influent being extracted by the SSDS prior to discharge to the exhaust stack. The purpose of this sampling was to confirm that the discharge to outdoor ambient air would comply with Puget Sound Clean Air Agency (PSCAA) regulations, and to compare concentrations of HVOCs in influent samples to outdoor air sampling results to evaluate whether the sources are related. Samples were collected using a 6-liter Summa canister at a sampling port located prior to entry to the SSDS blower. Samples were collected while the system was operating, and consisted of instantaneous grab samples. A slight vacuum was maintained in the canister to mitigate potential loss of the sampled influent, or exchange of sampled influent with ambient air during transport to the laboratory.

Routine maintenance activities included inspection of SSDS components. The main maintenance activities required during this reporting period included the aforementioned extension of the exhaust stack, cleaning of the SSDS blower filter, and draining of water that had accumulated in SSDS piping at the blower location during the winter/spring of 2016/2017. Because the water accumulation was more significant than the routine condensate accumulation expected, troubleshooting was conducted to evaluate the cause of the water accumulation.

On January 5, 2017, Farallon collected indoor and outdoor air samples to evaluate current conditions. At that time, the SSDS was operating at an applied vacuum of less than 2 IOW, and a corresponding flow rate of 13 SCFM. This was the first inspection event in which water accumulation resulting in reduced system efficiency occurred. The origin of the water

accumulation was uncertain because the vent stack direction and angle should prohibit water from entering the system. The volume of water drained from the system was approximately 2 gallons. Farallon restarted the system and again maximized the applied vacuum. On March 30, 2017, 0.5 gallon of water was drained from the SSDS; the water in the piping had no measurable effect on SSDS performance. Since the March 30, 2017 visit, the SSDS is assumed to be operating normally since transitioning from wet and cold seasonal conditions.

The unusually wet and cold seasonal conditions are suspected to have resulted in precipitation entering the exhaust stack and other SSDS piping subject to condensate accumulation. Modifications to the SSDS exhaust pipe may be necessary to mitigate water accumulation, and to ensure that the Building remains fully depressurized. Water is not expected to accumulate during seasonally dry conditions.

5.2 INSPECTION, MONITORING, AND MAINTENANCE RESULTS

Air quality monitoring results were used as the basis for the exhaust stack modifications and adjustments to SSDS operation to optimize reduction of HVOCs present in indoor air. Results from the air quality sampling, and adjustments to SSDS operation are described below. The air quality monitoring sample locations are depicted on Figure 3. The sampling parameters and the results are summarized on Tables 2 and 3, respectively. The laboratory analytical reports are provided in Appendix E.

Initial air quality monitoring results collected in June 2015 indicated that COCs persisted in indoor air at concentrations similar to pre-start-up conditions of the SSDS (Table 3). However, TCE concentrations detected in the outdoor ambient air sample were slightly higher than those detected in indoor air. The outdoor ambient air sample location was upwind of the Building, at the corner of South Fidalgo Street and Fourth Avenue South (Figure 3).

On October 9, 2015, the SSDS was adjusted to have a minimum measured differential pressure of 0.025 IOW at both subslab monitoring ports. The SSDS flow and vacuum was adjusted to increase differential subslab pressure. The adjusted VI mitigation system vacuum was 3.6 IOW and 12.9 SCFM, resulting in a measured differential pressure of 0.050 IOW at subslab monitoring port

SSMP-1, and 0.029 IOW at subslab monitoring port SSMP-2. Table 1 provides a summary of SSDS operation parameters for each site visit.

Additional air quality monitoring was conducted on November 30, 2015 to assess SSDS performance and whether further adjustment to the SSDS was necessary. Although an overall decrease in HVOCs was noted, TCE concentrations exceeded the non-cancer IPIMAL in both indoor air samples (Table 3). The outdoor ambient air sample location was shifted farther north to the southeastern corner of the Building, which was in the upwind direction. TCE concentrations for the outdoor ambient air sample were less than laboratory reporting limits.

On February 5, 2016, the SSDS air inlet was fully closed to apply maximum vacuum to the sumps. The maximum flow and vacuum for the SSDS was 6.8 IOW and 23.5 SCFM, resulting in a measured differential pressure of 0.100 IOW at subslab monitoring port SSMP-1, and 0.062 IOW at subslab monitoring port SSMP-2 (Table 1).

Air quality monitoring was conducted again on April 26, 2016 to evaluate whether the changes to SSDS operation implemented in February 2016 resulted in improved indoor air quality. Sampling results indicated that concentrations of TCE had increased at both indoor air sampling locations, exceeding both the cancer and non-cancer IPIMALs (Table 3). A significantly higher TCE concentration of 14.8 μ g/m³ was detected in the outdoor ambient air sample, collected upwind of the Building at the corner of South Fidalgo Street and Fourth Avenue South (Figure 3). TCE has been detected at this location each time an outdoor ambient air sample was collected between 2014 and 2016. The TCE concentrations have progressively increased with each sampling event.

To evaluate potential discharge from the system, an SSDS soil gas influent sample was collected for the first time. TCE was detected at a concentration of $243 \,\mu g/m^3$, and PCE at a concentration of $170 \,\mu g/m^3$. Although the discharge from the exhaust stack was directed to the northwest, downwind of the Building, discharge from the SSDS appeared to be the only known potential source of TCE. The exhaust stack height subsequently was raised an additional 2 feet, and the discharge direction was shifted downwind to the northeast. This work was completed on July 6, 2016. The evaluation of potential exhaust discharge indicated that concentrations of TCE and PCE would remain in compliance with the PSCAA criterion of less than 1,000 pounds per year total HVOCs (Table 1).

Air quality monitoring was conducted on August 31, 2016 to evaluate whether the heightened exhaust stack and discharge away from rather than across the Building resulted in a decrease in HVOCs to indoor air. SSDS operating parameters generally were consistent with April 26, 2016 operations. Outdoor ambient air sampling, which had been conducted upwind of the Building, was shifted back to the southeastern corner of the Building, closer to the direction of exhaust stack discharge, to evaluate the potential for increased HVOC concentrations resulting from the change in discharge direction. Two indoor air samples also were collected (Figure 3). Indoor air sampling results indicated that concentrations of TCE had decreased, but still exceeded cancer and non-cancer IPIMALs (Table 3). HVOC concentrations were not detected in the outdoor ambient air sample.

An SSDS soil gas influent sample was collected in August 2016 to evaluate whether the discharge likely was still compliant with PSCAA regulations, and to confirm that TCE was still present in the discharge at concentrations that likely would influence indoor and/or outdoor ambient air sampling results. TCE had increased from a concentration of 243 to 482 μ g/m³ (Table 3). The concentration of PCE also had increased from 170 to 497 μ g/m³.

The SSDS applied vacuum has been maximized at the Building since the third quarter of 2016 to assess whether concentrations of TCE could be reduced below IPIMALs. The average applied vacuum was between 6 and 7 IOW. On January 5, 2017, air quality monitoring was conducted again to evaluate TCE concentrations in indoor air during the winter heating season, when vapor intrusion potential is greatest. Two indoor air samples and one outdoor ambient air sample were collected (Figure 3; Table 2). The outdoor air sample location was upwind, and shifted back to the corner of South Fidalgo Street and Fourth Avenue South. An SSDS influent sample also was collected.

The results from the indoor air sampling indicated that both TCE and PCE concentrations had increased since the August 2016 sampling event. TCE was detected at a concentration of 39.5 $\mu g/m^3$ in the sample collected inside the office portion of the Building, which is the highest

concentration detected inside the Building, including prior to SSDS installation. The laboratory data were validated; the quality of the data is acceptable. SSDS operation was reviewed, and the applied vacuum was reduced to less than 2 IOW, resulting in a decrease in depressurization across the Building slab area. The reason for the loss of vacuum was an unexpected accumulation of water in the SSDS piping at the blower location, which was discovered during a second operation and maintenance visit on January 19, 2017 to troubleshoot the low-vacuum issue. The SSDS was shut down, and the air inlet was opened and the filter removed when approximately 1 gallon of water spilled from the piping. The elbow location prior to the exhaust stack was tapped with a drill to check for water at this likely accumulation point; approximately 1 gallon of water was drained from this location. The water accumulation was speculated to be due to precipitation entering the exhaust stack.

The SSDS was restarted after the water had been drained from the piping. The applied vacuum increased to approximately 7.3 IOW. The tenant was reminded to monitor the applied vacuum at the gauge location daily, and to contact Farallon if the applied vacuum decreased. On March 23, 2017, Farallon returned to conduct an air quality monitoring event, and again found the applied vacuum reduced to less than 2 IOW. Approximately 5 gallons of water was drained from system piping through drain valves installed during the January 5, 2017 site visit. SSDS operation was optimized again to maximize the applied vacuum to between 6 and 7 IOW. Air quality monitoring was not conducted at this time.

On March 30, 2017, Farallon returned to the Site to conduct an air quality monitoring event. The applied vacuum was approximately 6.7 IOW, and the SSDS appeared to be operating efficiently. Two indoor air samples and one outdoor ambient air sample were collected (Figure 3). The outdoor ambient air sampling was conducted upwind of the Building, but was shifted back to the southeastern corner of the Building. The SSDS was inspected for water accumulation. Approximately 0.5 gallon of water was drained from SSDS piping at the elbow leading to the exhaust stack, suggesting that precipitation may be entering the exhaust stack.

TCE concentrations had decreased since the January 5, 2017 sampling event, but still exceeded cancer and non-cancer IPIMALs (Table 3). The outdoor ambient air sample did not contain detectable concentrations of HVOCs. An SSDS influent sample also was collected. TCE

concentrations decreased from 266 to 169 μ g/m³, and PCE concentrations decreased from 153 to 138 μ g/m³ (Table 3).

No inspections or air quality monitoring was conducted between March 30 and July 31, 2017. During warmer seasonal conditions, the building typically is ventilated during the day when workers are present by opening rollup doors and other doors. Air quality monitoring under high barometric pressure, and spring/summer ventilation of the building is anticipated to yield low concentrations of HVOCs that cannot be directly compared to prior results.

6.0 CONCLUSIONS

Air quality monitoring results for PCE and TCE have fluctuated, with TCE concentrations continuing to exceed cancer and non-cancer IPIMALs, despite maximizing the applied vacuum of the SSDS (Table 3; Figures 4 through 6). SSDS soil gas influent sampling results indicate that the SSDS is effectively capturing PCE and TCE vapors from beneath the Building slab (Table 3). Depressurization of the area beneath the Building slab is confirmed by pressure field monitoring data, which confirm that depressurization of the slab is occurring, and exceeding the criteria established for the SSDS in the VIIMM Work Plan (Table 1).

Building inspections conducted prior to each air quality monitoring event have not identified products containing PCE or TCE in the Building, consistent with prior Tier 3 VI Assessment results. Cracks and penetrations in the concrete floor slab were identified and sealed before the SSDS was installed. Post-installation inspection and monitoring visits have not identified cracks or penetrations in the floor slab, although a significant amount of machinery and materials present in the Building may be obscuring areas where soil gas may enter indoor air. It also is possible that the building materials contain a source of TCE that has not been identified.

Outdoor ambient air sampling results for the samples collected at the corner of South Fidalgo Street and Fourth Avenue South suggest that a source of TCE is present in outdoor ambient air. The initial conclusion was that SSDS discharge from the exhaust stack may have affected outdoor ambient air samples. However, the prevailing wind direction has been to the north/northeast, which should not result in dispersal of discharge to the south. HVOC concentrations in the outdoor ambient air samples collected closer to the Building have been consistently less than laboratory reporting limits. Insufficient data exist to determine whether SSDS discharge is affecting outdoor ambient air sampling results at the corner of South Fidalgo Street and Fourth Avenue South, or whether a source of TCE exists in outdoor ambient air. Outdoor ambient air results for samples collected adjacent to the Building suggest that whatever the source of TCE at the corner of South Fidalgo Street and Fourth Avenue South, it does not appear to affect outdoor ambient air at the Building location. Therefore, indoor air samples likely are not biased high due to potential influence from outdoor ambient air being exchanged with indoor ambient air.

The water accumulation that has occurred in the piping prior to entry to the blower and after the blower may be due to condensation in the piping leading to the blower, or to a combination of condensation and precipitation entering the exhaust stack. The cause was not confirmed prior to the start of dry seasonal conditions, and will need to be re-evaluated in the fall/winter. Air quality monitoring results for January 5, 2017, when the vacuum decreased to 1.8 IOW, indicated a direct correlation between a decrease in SSDS performance and an increase in PCE and TCE concentrations present in indoor air (Figures 5 and 6).

Similarly, air quality monitoring results for PCE and TCE correlated well with changes in SSDS operation. Maximizing the SSDS vacuum resulted in decreasing concentration trends in PCE and TCE (Figures 5 and 6). These results confirm that the SSDS is mitigating vapor intrusion risk. However, reducing TCE concentrations below IPIMALs may require modifications to the SSDS and/or further investigation of the Building slab and building materials to identify where soil gas is entering the Building. If the source is a crack or slab penetration that can be sealed, the SSDS should achieve VI mitigation objectives. Applying a higher vacuum appears to be another feasible alternative based on the decrease in PCE and TCE concentrations in direct response to maximizing the capabilities of the current blower.

7.0 PLANNED WORK

SSDS operation will continue at the maximum applied vacuum. A portable gas chromatography unit may be used to inspect the Building and evaluate whether a slab penetration, crack, and/or indoor source of HVOCs exists that has not yet been identified. If this approach is successful, continued operation of the SSDS should result in achieving IPIMALs and mitigating VI risk.

If a penetration or crack cannot be identified and sealed, a blower with a higher capacity can be installed. Air quality monitoring will be conducted quarterly to continue to evaluate PCE and TCE trends. The results from performance air sampling will be used to determine whether additional modification to the SSDS is required.

If water continues to collect in the SSDS system, vent stack discharge will be modified further to prevent rain from entering the stack. Piping sumps also may be installed to collect water in the piping system without blocking flow, thereby optimizing the applied vacuum to the Building subslab. The piping sumps would be installed with drains to empty water that collects in the piping network.

The staff at Pacific Food Systems, Inc. will be reminded to monitor the applied vacuum more closely, and to notify Farallon if the vacuum falls to 5 IOW or below until the source of TCE in the Building has been identified and mitigated. Maintaining the maximum vacuum that the current blower is capable of will minimize VI risk. Farallon will work with Pacific Food Systems, Inc. employees to identify the best practices to facilitate documenting monthly tenant inspections, and to maintain a log with monthly entries of vacuum readings of the pressure gauge. Installing an alarm with a visual and/or audible notification of loss of vacuum also is being evaluated.

8.0 BIBLIOGRAPHY

- Arrow Environmental; Aspect Consulting; Farallon Consulting, L.L.C.; and Pacific Groundwater Group. 2007. Draft *Interim Vapor Intrusion Plan*. Prepared for the Washington State Department of Ecology. May 1.
- Farallon Consulting, L.L.C. (Farallon). 2008a. Remedial Investigation Work Plan, Capital Industries, Inc. 5801 Third Avenue South, Seattle, Washington. Prepared for Ron Taylor, Capital Industries, Inc. September 16.
- ———. 2008b. Vapor Intrusion Assessment Work Plan, Capital Industries, Inc., 5801 Third Avenue South, Seattle, Washington. Prepared for Ron Taylor, Capital Industries, Inc. September 16.
- 2009. Remedial Investigation Field Program First Phase Report, Capital Industries, Inc., 5801 3rd Avenue South, Seattle, Washington. Prepared for Ron Taylor, Capital Industries, Inc. September 18.
- ———. 2011a. Addendum to the Vapor Intrusion Assessment Work Plan, Capital Industries, Inc., 5801 Third Avenue South, Seattle, Washington. Prepared for Ron Taylor, Capital Industries, Inc. January 18.
- ———. 2011b. *Tier 3 Vapor Intrusion Assessment Sampling and Analysis Plan, 5814 4th Avenue South North Building, Seattle, Washington.* Prepared for Ron Taylor, Capital Industries, Inc. December 23.
 - _____. 2012. *Revised Draft Remedial Investigation Report, 5901 4th Avenue South, Seattle, Washington*. Prepared for Ron Taylor, Capital Industries, Inc. October.
- ———. 2013. 2013 Tier 3 Vapor Intrusion Assessment Sampling and Analysis Plan Addendum, Capital Industries, Inc. 5801 Third Avenue South, Seattle, Washington. Prepared for Ed Jones, Washington State Department of Ecology. February 27.
- ———. 2014a. Letter Regarding Response to Ecology, Vapor Intrusion Action at 5815 4th Avenue South, Capital Industries, Inc. From Jeffrey Kaspar. To Ed Jones, Washington State Department of Ecology. January 24.

- 2014b. 2014 Tier 3 Vapor Intrusion Assessment Report, 5814 4th Avenue South North Building, Seattle, Washington. Prepared for Ron Taylor, Capital Industries, Inc. August 20.
- ———. 2014c. *Revised Preliminary Cleanup Standards Memorandum, W4 Joint Deliverable, Seattle, Washington.* Prepared for Ed Jones, Washington State Department of Ecology. September 12.
- ———. 2014d. Vapor Intrusion Mitigation Design Plan, 5815 4th Avenue South–North Building, Seattle, Washington. Prepared for Ron Taylor, Capital Industries, Inc. November 10.
- ———. 2015a. Revised Vapor Intrusion Assessment, Monitoring, and Mitigation Plan, W4 Joint Deliverable, Seattle, Washington. Prepared for Ed Jones, Washington State Department of Ecology. February 2.
- ———. 2015b. Vapor Intrusion, Inspection, Monitoring, and Maintenance Work Plan, Pacific Seafoods, 5815 Fourth Avenue South North Building, Seattle, Washington. Prepared for Ron Taylor, Capital Industries, Inc. November.
- King County, Washington. 2007. *GIS Center, Parcel Viewer*. No date. <<u>http://gismaps.kingcounty.gov/parcelviewer2/>.</u> (December 31, 2007.)
- Philip Services Corporation. 2002. *Revised Inhalation Pathway Interim Measures Work Plan.* Prepared for the Washington State Department of Ecology. August.
- ———. 2005. Verification of Depressurization System Effectiveness and Long-Term Operation and Maintenance Plan for Inhalation Pathway Interim Measures. April 2005.
- Pioneer Technologies Corporation. 2012. Updated Air and Groundwater IPIMALs/VIRLs for Residential and Commercial Scenarios for the Georgetown Site. Prepared for the Washington State Department of Ecology. November 29.
- U.S. Environmental Protection Agency (EPA). 1993. Radon Reduction Techniques for Existing Detached Houses: Technical Guidance (Third Edition) for Active Soil Depressurization Systems. EPA/625/R-93/-011. October.

—. 1994. Radon Mitigation Standards. EPA 402-R-93-078. Revised April.

- Washington State Department of Ecology (Ecology). 2010. Letter Regarding Capital Industries Site #11598755, Remedial Investigation Agreed Order (#DE 5348), Vapor Intrusion Assessment.
 From Ed Jones. To Ron Taylor, Capital Industries, Inc. November 3.
- 2011. Letter Regarding Capital Industries Site #11598755, Remedial Investigation Agreed Order (#DE 5348), Tier 3 Vapor Intrusion Assessment at Three Buildings in South Seattle, WA. From Ed Jones. To Ron Taylor, Capital Industries, Inc. December 29.
- ———. 2012. Letter Regarding Capital Industries Site #11598755, Remedial Investigation Agreed Order (#DE 5348), Tier 3 Report for 5815 4th Ave South, Seattle, WA. From Ed Jones. To Ron Taylor, Capital Industries, Inc. May 23.
- ———. 2013. Letter Regarding Capital Industries Site # 11598755, Remedial Investigation Agreed Order #DE 5348, Tier 3 Vapor Intrusion Report for 5815 4th Ave. South, Seattle, WA. From Ed Jones. To Ron Taylor, Capital Industries, Inc. July 5.
- 2014a. Letter Regarding Capital Industries Site # 11598755, Remedial Investigation Agreed
 Order #DE 5348, Vapor Intrusion Action at 5815 4th Ave. South, Seattle, WA. From Ed Jones.
 To Ron Taylor, Capital Industries, Inc. January 13.
- ———. 2014b. Letter Regarding Capital Industries Site # 11598755, Remedial Investigation Agreed Order #DE 5348, Vapor Intrusion at 5815 4th Ave. South, Seattle, WA. From Ed Jones. To Ron Taylor, Capital Industries, Inc. January 30.

FIGURES

VAPOR INTRUSION MITIGATION MEASURES STATUS REPORT Pacific Food Systems, Inc. North Building 5815 Fourth Avenue South Seattle, Washington

Farallon PN: 457-007

Figure 4 PCE and TCE Air Quality Monitoring Trends Pacific Food Systems, Inc. North Building Seattle, Washington Farallon PN: 457-007

Figure 5 Air Quality Monitoring Trends: PCE Pacific Food Systems, Inc. North Building Seattle, Washington Farallon PN: 457-007

PCE = tetrachloroethene SSDS = subslab depressurization system
Figure 6 Air Quality Monitoring Trends: TCE Pacific Food Systems, Inc. North Building Seattle, Washington Farallon PN: 457-007

SSDS = subslab depressurization system

TCE = trichloroethene

DRAFT - Issued for Agency Review

TABLES

VAPOR INTRUSION MITIGATION MEASURES STATUS REPORT Pacific Food Systems, Inc. North Building 5815 Fourth Avenue South Seattle, Washington

Farallon PN: 457-007

Table 1Summary of Air Quality Monitoring ParametersPacific Food Systems, Inc. North BuildingSeattle, WashingtonFarallon PN: 457-007

Sample Type	Sample Location	Location Description	Sample Identification	Sample Date	Sample Start Time	Sample Fnd Time	Sample	Initial Pressure (inches of mercury)	Final Pressure (inches of mercury)	Sampling Shroud Helium Concentration (percent)	Leak Test Helium Concentration
	SS-2	Western side of Pacific Foods North Building Shop Area	5815N-Warehouse1-041311	4/13/2011	11:10	12:02	0:52	29.5	4.5	22.5	Not Applicable
Subslab	SS-3	Central part of Pacific Foods North Building Shop Area	5815N-Warehouse2-041311	4/13/2011	14:09	14:54	0:45	29.5	6.5	13.3	Not Applicable
			FAR-36029-022112	2/21/2012	8:17	16:17	8:00	30	7.0		
			IA-3-1565-032013	3/20/2013	8:30	16:30	8:00	28.5	6.5	Not Applicable	
	IA-3/IA2/ PacN_Shop_W		IA6-22497-060115	6/1/2015	9:14	17:00	7:46	30	6.0		Not Applicable
		Western side of Pacific Foods North Building Shop Area	IA5-15899-113015	11/30/2015	8:36	14:35	5:59	28	6.0		
			IA2-1042616-Warehouse	4/26/2016	9:46	16:59	7:13	30	6.0	Not Applicable	
			IA2-083116-Warehouse	8/31/2016	8:38	15:58	7:20	30	5.0	-	
			IA2-010517-Warehouse	1/5/2017	8:45	16:45	8:00	30	6.0		
			IA-2-033017	3/30/2017	9:00	16:30	7:30	30	5.0		
			FAR-25243-022112	2/21/2012	8:10	16:10	8:00	30	7.5		
Indoor Air			IA-4-34193-032013	3/20/2013	8:35	16:35	8:00	29.5	7.5		
			IA7-34758-060115	6/1/2015	9:16	16:12	6:56	26	5.0	-	
	IA-4/IA1/	Pacific Foods North Building	IA4-17646-113015	11/30/2015	8:32	14:37	6:05	30	7.0	Not Applicable	Not Applicable
	PacN_Office	Front Office	IA1-1042616-Office	4/26/2016	9:45	16:58	7:13	30	5.0	Not Applicable	Not Applicable
			IA1-083116-Office	8/31/2016	8:36	15:58	7:22	30	5.0		
			IA2-010517-Office	1/5/2017	8:40	15:40	7:00	30	5.0	-	
			IA-1-033017	3/30/2017	9:02	16:40	7:38	30	5.0		
	IA-5	Pacific Foods North Building	IA-5-13844-042414	4/24/2014	8:26	16:06	7:40	30	6.0		
	IA-6	Parts Cleaner Area in Shop	IA-6-33970-050514	5/5/2014	9:15	17:10	7:55	30	6.0	not Applicable	Not Applicable

Table 1Summary of Air Quality Monitoring ParametersPacific Food Systems, Inc. North BuildingSeattle, WashingtonFarallon PN: 457-007

Somple Type	Sample Location	Location Decorintion	Sample Identification	Somple Date	Sample Stort Time	Sample End Time	Sample	Initial Pressure (inches of	Final Pressure (inches of	Sampling Shroud Helium Concentration	Leak Test Helium Concentration
OA-1	Sample Location		FAR-5659-022112	2/21/2012	8:46	16:46	8.00	30	5 0	(percent)	(percent)
	OA-1	Outside south of Pacific	17IK 5057 022112	2/21/2012	0.40	10.40	0.00	50	5.0	Not Applicable	Not Applicable
		1000s South Building	IA-5-931-032013	3/20/2013	9:00	17:00	8:00	30	7.5		
			OA-2-34748-042414	4/24/2014	8:41	16:46	8:05	30	6.0	– Not Applicable –	Not Applicable
Outdoor Air	OA-2/OA-1/ Pac_Out_S_Pole	Outside Pacific Foods South Building at southeastern corner on telephone pole	AA3-96113-060115	6/1/2015	9:26	17:26	8:00	26	5.0		
			AA1-042616-UW	4/26/2016	10:25	18:26	8:01	30	5.0		
			AA1-010517-UW	1/5/2017	8:50	16:55	8:05	30	8.0		
		Outside east of Pacific Foods	AA1-15423-113015	11/30/2015	9:04	16:31	7:27	30	6.0	Not Applicable	
	Pac_Out_E_Pole		AA1-083116-DW	8/31/2016	8:48	16:00	7:12	30	8.0		Not Applicable
		F F	OA-1-033017	3/30/2017	9:05	15:37	6:32	29	4.0		
			SYSTEMINFLUENT-042616	4/26/2016	9:55	9:56	0:01	30	NM		
5005	SSDS Influent	SSDS influent semple port	SYSTEM-083116	8/31/2016	9:01	9:06	0:05	30	6.0	Not Applicable	Not Applicable
2002	SSDS Influent	sobo minuent sample port	PFS-INF-010517	1/5/2017	9:40	9:41	0:01	30	6.0	- Not Applicable	Not Applicable
			PFS-Influent-033017	3/30/2017	9:20	9:20	0:00	30	6.0		

NOTES:

Pacific Foods = Pacific Food Systems, Inc.

SSDS = subslab depressurization system

Table 2

SSDS Operations Parameters Pacific Food Systems, Inc. North Building Seattle, Washington Farallon PN: 457-007

	Pressure Gauge	Field-Measured	Subslab Mor (IO	Subslab Monitoring Port (IOW)		Pressure Gauge/Field-	Lab-measured ¹ (µg/m ³)		Removal Rate ² (µg/minute)		Projected Annual Discharge ³ (lbs/year)	
	Vacuum Reading	Operating Vacuum	SSMP-1	SSMP-2	SVE System Flow	Measured Pressure Differential						
Date	(IOW)	(IOW)	(West)	(East)	(scfm)	(percent)	PCE	TCE	PCE	TCE	PCE	TCE
4/1/2015	1.9	1.7	0.025	0.007	>12.88	92%	NM	NM	NM	NM	NM	NM
6/1/2015	2.2	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
10/9/2015	3.6	3.3	0.050	0.029	12.88	92%	NM	NM	NM	NM	NM	NM
2/5/2016	4.2	3.9	0.057	0.035	16.63	93%	NM	NM	NM	NM	NM	NM
2/3/2010	6.8	6.7	0.100	0.062	23.52	99%	NM	NM	NM	NM	NM	NM
4/26/2016	6.8	7.2	0.1	0.058	NM	106%	170	243	113.2	161.9	0.131	0.188
8/31/2016	NM	NM	NM	NM	NM	NM	497	482	331.1	321.1	0.384	0.372
1/5/2017	1.8	2.2	0.015	0.006	12.88	122%	153	266	55.8	97.0	0.065	0.113
3/23/2017	1.5	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
3/30/2017	6.7	NM	NM	NM	19.68	NM	138	169	76.9	94.2	0.089	0.109
VIMMWP SSDS Operations Goals	Not Aj	pplicable	<0.025	<0.025	Not Applicable	75 - 125 percent		Not Ap	plicable		1,000 ll	os/year ³

NOTES:

¹Laborary analytical data used when available.

²Removal Rate ($\mu g/min$) = SVE flow (scfm)*(1 meter³/35.29 feet³)*Measured PCE or TCE ($\mu g/m^3$)

³Projected Annual Discharge (lbs) = $(24 \text{ hr/day})*(60 \text{ min/hr})*(365.25 \text{ days/yr})*(\text{removal rate }(\mu g/\text{min}))*(1 \text{ mg/1},000 \mu g)*(1 \text{ g/1},000 \text{ mg})*(1 \text{ lb/453.54 g})$

³Puget Sound Clean Air Agency Regulation 1.6.03 C.94 annual discharge = 1,000 pounds cumulative total of PCE and TCE.

g = grams hr = hourIOW = inches of water lbs = pounds $\mu g = micrograms$ $\mu g/minutes = micrograms per minute$ $\mu g/m^3 = micrograms$ per cubic meter min = minute NM = not measured PCE = tetrachloroethene ppmv = parts per million volume psi = pounds per square inch scfm = standard cubic feet per minute SSDS = subslab depressurization system SVE = soil vapor extractionTCE = trichloroethene VIMMWP = Vapor Intrusion, Inspection, Monitoring, and Maintenance Work Plan yr = year

Table 3Summary of Air Quality Monitoring ResultsPacific Food Systems, Inc. North BuildingSeattle, WashingtonFarallon PN: 457-007

					Analytical Results (micrograms per cubic meter)							
Sample Type	Location	Location Description	Sample Identification	Sample Date	PCE ¹	TCE ¹	cis-1,2- Dichloroethene ¹	trans-1,2- Dichloroethene ¹	1,1- Dichloroethene ¹	Vinyl Chloride ¹		
			FAR-36029-022112	2/21/2012	1.5	4.4	0.98	<0.67	< 0.067	< 0.043		
			IA-3-1565-032013	3/20/2013	1.6	7.0	1.6	<0.68	< 0.068	<0.044		
			IA6-22497-060115	6/1/2015	0.39	2.0	<0.12	<0.63	< 0.063	< 0.040		
	IA-3/	Western side of Pacific	IA5-15899-113015	11/30/2015	0.534	0.971	< 0.0793	< 0.0238	< 0.0357	<0.217		
	PacN_Shop_W	Area	IA2-1042616-Warehouse	4/26/2016	0.61	4.68	< 0.0793	< 0.0238	NM	<0.217		
			IA2-083116-Warehouse	8/31/2016	0.475	2.15	< 0.0793	< 0.0238	< 0.0357	<0.217		
			IA2-010517-Warehouse	1/5/2017	0.905	2.95	0.201	< 0.0238	< 0.0357	< 0.217		
			IA-2-033017	3/30/2017	< 0.339	1.51	< 0.0793	< 0.0238	< 0.0357	<0.217		
Indoor Air			FAR-25243-022112	2/21/2012	0.60	1.9	0.32	<0.68	< 0.068	< 0.044		
			IA-4-34193-032013	3/20/2013	0.66	2.4	0.43	<0.67	< 0.067	< 0.043		
			IA7-34758-060115	6/1/2015	1.1	1.9	< 0.12	<0.62	< 0.062	< 0.040		
	IA-4/	Pacific Foods North	IA4-17646-113015	11/30/2015	0.606	0.938	< 0.0793	< 0.0238	< 0.0357	<0.217		
	PacN_Office	Building Front Office	IA1-1042616-Office	4/26/2016	0.475	4.84	< 0.0793	< 0.0238	NM	<0.217		
			IA1-083116-Office	8/31/2016	0.475	2.26	< 0.0793	< 0.0238	< 0.0357	<0.217		
			IA2-010517-Office	1/5/2017	0.585	39.5	< 0.0793	< 0.0238	< 0.0357	<0.217		
			IA-1-033017	3/30/2017	0.351	3.42	< 0.0793	< 0.0238	< 0.0357	<0.217		
	IA-5	Pacific Foods North Building Parts Cleaner	IA-5-13844-042414	4/24/2014	1.1	3.4	0.49	<0.65	< 0.065	< 0.042		
	IA-6	Area in Shop	IA-6-33970-050514	5/5/2014	0.95	3.6	0.34	<0.65	< 0.065	< 0.042		
	04.1	Outside south of Pacific	FAR-5659-022112	2/21/2012	<0.22	< 0.17	< 0.13	<0.64	< 0.064	< 0.041		
	UA-1	Foods South Building	OA-1-35995-032013	3/20/2013	<0.23	< 0.18	< 0.13	<0.66	< 0.066	< 0.043		
		Outside Pacific Foods	OA-2-34748-040214	4/24/2014	<0.21	0.27	< 0.12	<0.61	< 0.061	< 0.039		
	OA-2/	South Building at	AA3-96113-060115	6/1/2015	< 0.21	2.9	< 0.12	<0.61	< 0.061	< 0.039		
Outdoor Air	Pac_Out_S_Pole	southeastern corner on	AA1-042616-UW	4/26/2016	< 0.339	14.8	< 0.0793	< 0.0238	NM	<0.217		
		telephone pole	OA1-010517-UW	1/5/2017	0.573	4.96	< 0.0793	< 0.0238	< 0.0357	<0.217		
		Outside east of Pacific	AA1-15423-113015	11/30/2015	< 0.339	<0.0914	<0.0793	<0.0238	< 0.0357	<0.217		
	Pac_Out_E_Pole	Foods buildings on	AA1-083116-DO	8/31/2016	< 0.339	<0.0914	<0.0793	<0.038	< 0.0357	<0.217		
		telephone pole	OA-1-033017	3/30/2017	< 0.339	<0.0914	<0.0793	< 0.0238	< 0.357	<0.217		

Table 3Summary of Air Quality Monitoring ResultsPacific Food Systems, Inc. North BuildingSeattle, WashingtonFarallon PN: 457-007

					Analytical Results (micrograms per cubic meter)					
Sample Type	Location	Location Description	Sample Identification	Sample Date	PCE ¹	TCE ¹	cis-1,2- Dichloroethene ¹	trans-1,2- Dichloroethene ¹	1,1- Dichloroethene ¹	Vinyl Chloride ¹
	SSDS Influent	SSDS Influent sample port	SYSTEMINFLUENT-042616	4/26/2016	170	243	12.9	0.238	NM	<0.217
5505			SYSTEM-083116	8/31/2016	497	482	23.9	0.278	< 0.0357	<0.217
2202			PFS-Influent-010517	1/5/2017	153	266	5.95	0.211	< 0.0357	<0.217
			PFS-Influent-033017	3/30/2017	138	169	9.95	0.264	< 0.0357	<0.217
Commercial Indoor Air IPIMAL - Cancer ²					22	1.5	Not Applicable ³		Not Applicable ³	0.66
Commercial l	Commercial Indoor Air IPIMAL - Non-cancer ²					0.39	Not Applicable	Not Applicable		19

NOTES:

Results in **bold** denote concentrations exceeding an IPIMAL.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹ Samples analyzed by U.S. Environmental Protection Agency (EPA) Method Modified TO-15 Selective Ion Mode.

² Interim action levels presented from Updated Air and Groundwater IPIMALS/VIRLs for Residential and Commercial Scenarios for the Georgetown Site dated October 19, 2012. Note that only compounds representing a vapor intrusion risk are listed.

³ "Not Applicable" is used where the constituent of concern will not affect the medium of potential concern due to an incomplete pathway or no pertinent standard exists.

IPIMAL = inhalation pathway interim measure action level NA = not analyzed Pacific Foods = Pacific Food Systems, Inc.

PCE = tetrachloroethene

SSDS = subslab depressurization system

TCE = trichloroethene

VIRLS = vapor intrusion remediation levels

APPENDIX A SUBSLAB DEPRESSURIZATION SYSTEM SCHEMATICS

VAPOR INTRUSION MITIGATION MEASURES STATUS REPORT Pacific Food Systems, Inc. North Building 5815 Fourth Avenue South Seattle, Washington

Farallon PN: 457-007

SUB-SLAB DEPRESSURIZATION SYSTEM

PACIFIC FOOD SYSTEMS - NORTH BUILDING 5815 4TH AVE SOUTH SEATTLE, WA 98108

DRAWING INDEX

SHEET NO.	DRAWING TITL
1	TITLE SHEET, SITE LOC
2	GENERAL NOTES, LEGE
3	SITE PLAN WITH SUB-SI
4	DETAILS

PREPARED FOR CAPITAL INDUSTRIES, INC. 5801 3RD AVE. SOUTH SEATTLE, WA 98108

LE

CATION MAP, AND DRAWING INDEX

END, SYMBOLS, AND ABBREVIATIONS

LAB DEPRESSURIZATION SYSTEM

SUB-SLAB DEPRESSURIZATION SYSTEM

TITLE SHEET, SITE LOCATION MAP, AND DRAWING INDEX

AS SHOWN	
PROJECT NO 457-007	0.
FILE NAME: SYSTEM.dwg	1
SHEET NO.	OF
1	4

ELECT	RICAL ABBREVIATIONS				PIPING, E				
A/AMP	AMP	AF AIR FI AB AGGF AC ASPH	LTER EGATE BASE ALTIC CONCRETE	HDPE HORIZ	HIGH DENSITY POLYETHYLENE HORIZONTAL HORSEPOWEP/HIGH DESSURE	PRV PSI	PRESSURE RELEASE VALVE POUNDS PER SQUARE INCH	X	— GATE VALVE ——
AC	ALTERNATING CURRENT	APPROX APPR	OXIMATELY	HR	HOUR	PSIA PSIG	POUNDS PER SQUARE INCH, ABSOLUTE POUNDS PER SQUARE INCH, GAUGE		- GLOBE VALVE
BD	BUS DUCT	AS AIR S	PARGE	HS HYD	HOSE HYDRANT	PTW PVC	PRESSURE TREATMENT		— BALL VALVE
С		BF BLIND B.G.S. BELO) FLANGE W GROUND SURFACE	HOA	HAND OFF AUTOMATIC	PV	PADE SALES VARIABLE		BUTTERFLY VALVE
CLG	CEILING	BLDG BUILD BOP BOTT		ID IN	INSIDE DIAMETER	PUE	PAIR PUBLIC UTILITY EASEMENT	\	— CHECK VALVE
DC	DIRECT CURRENT	BV BALL		INV	INVERT	R	RADIUS/RISER		
DIS		CPLG CONC	ING	IPS	IRON PIPE SIZE	RC	REINFORCED CONCRETE	s	
DT	DOUBLE THROW	L CL CENT CV CONT	ERLINE ROL VALVE/CHECK VALVE	JB	JUNCTION BOX	REF	REFERENCE		- SOLENOID VALVE
EG	ENCLOSED AND GASKETED	DC DOUE		КО	KNOCK OUT	SCH	SCHEDULE		
E(OH) E(UG)	ELECTRICAL (OVERHEAD)	/DIA DIAMI DWG DRAV	ETER /ING	LSHH	LEVEL SWITCH	SDR SECT	STANDARD DIMENSION RATIO		
EMER	EMERGENCY	DP DUAL	PHASE	MAX	MAXIMUM	SHT	SHEET	K	 PRESSURE REGULATING VALVE
EPO	ELECTRICAL METALLIC TUBING		EACE	MH MJ	MANHOLE MECHANICAL JOINT	SPEC	SPECIFICATION	*	
EXP	EXPOSED	EL/ELEV ELEV	ATION	MIN		STA STD	STATION STANDARD	D	DRAIN
FBO	FURNISHED BY OTHERS	ELEC ELEC ELB ELBO	TRICAL W	MNPT	MISCELLANEOUS MALE NATIONAL PIPE THREAD	STL	STEEL		WELD CAP
FLEX	DUAL ELEMENT FUSE	EPDM ETHY	LENE PROPYLENE RUBBER			SBO ST	SUPPLIED BY OWNER SAMPLE TAP		
GEN	GENERATOR	EXIST/(E) EXIST EXP EXPA	NSION	MW	MONITORING WELL	STR	STRAINER STAINI ESS STEEL		中 SCREWED PLUG
GFIC	GROUND FAULT INTERRUPTER	EW EACH FA FACH	WAY	NC	NORMALLY CLOSED	STL	STEEL	Ū	- FLANGE
GND GRC	GROUND GALVANIZED RIGID CONDUIT	EC FAIL (CLOSE	NIC		SVE SW	SOIL VAPOR EXTRACTION SWITCH		H BLIND FLANGE
		FO FAIL C	DPEN	NO.	NUMBER	7.0	7/0/04		- REDUCER/INCREASER
HUA	HAND-OFF-AUTO SWITCH	FLXC FLEXI FM FLOW	METER	N NTS	NEW NOT TO SCALE	TOC	TOP OF CASING/CURB		DIRECTION OF FLOW
IRD	INFRARED DETECTOR	FL FLOW	LINE	NPDES	NATIONAL POLLUTION DISCHARGE	TOS	TOP OF STEEL		— — UNION
HP	HORSE POWER	FUT FUTU	RE	oc	ON CENTER	1011			- FLEXIBLE PIPE COUPLING
HZ	CYCLES PER SECOND	FIN GR FINISI	HED GRADE GED END	OD OSHA	OUTSIDE DIAMETER	UBC UGPS	UNIFORM BUILDING CODE UNDERGROUND PULL SECTION		
JB	JUNCTION BOX	FNPT FEMA	LE NATIONAL PIPE THREAD	OUTIA	HEALTH ADMINISTRATION	UTIL	UTILITY		- BLOWER OR FAN
LFMC	LIQUID TIGHT FLEXIBLE	GAC GRAD	E	OVHD	OVERHEAD	V	VALVE/VENT/VOLTS	Č-	- CENTRIEUGAL PUMP
	METAL CONDUIT	GALV GALV	ANIZED	#/LB PB	POUND PULL BOX	VAC	VACION		
M	MOTOR/MOTOR STARTER COIL	GI GALV GPM GALL	ANIZED IRON ONS PER MINUTE	PBF	PROVIDED BY FARALLON	VERT	VAPOR	目	PITOT TUBE
MCP	MOTOR CIRCUIT PROTECTOR	GR GRAD		PCC	PORTLAND CEMENT PORTLAND CEMENT CONCRETE	VRV	VACUUM RELIEF VALVE		
NC	NORMALLY CLOSED	GSKT GASK	ET	PG PL	PRESSURE GAS PROPERTY LINE/PIPE LINE	W/ W/O	WITH WITHOUT		- STRAINER
NEC NEMA	NATIONAL ELECTRIC CODE	GW GROU GV GATE	VALVE	PO	PUMP OUT	WS	WATER SURFACE/WATER STOP	- I	TRAP
NE	MANUFACTURERS ASSOCIATION			P	PRESSURE			\bigcup	
NO	NON-FUSED NORMALLY OPEN	INST	RUMENTATION ABBR	EVIATION	IS AND SYMBOLS			AF	— FILTER
OL	OVERLOADS								DIAMETER
PBS	PUSHBUITTON	INSTRU			INSTRUMENT SYMBOLS		STANDARD SYMBOLS		
PF	POWER FACTOR					s			
PL PLC	PILOT LIGHT PROGRAMMABLE LOGIC CONTROLLER	FIRST LETTER	SUCCEEDING LETTERS	SYMPO	DESCRIPTION				
		INITIATING VARIABLE	OUTPUT FUNCTIONS	311000	E DESCRIPTION		REFERENCED		
RC	RIGID CONDUIT								
RCPT	RECEPTACLE			M	MOTOR				1. A COPT OF THE PROJECT E
SN SP	SOLID NEUTRAL SINGLE POLE								2. COPIES OF ALL PERMITS SH
ST	SINGLE THROW	A ANALYSIS B BURNER	ALARM	НОА	SELECTOR SWITCH				ALL PERMIT REQUIREMENT
SW	SWITCH	C CONDUCTIVITY	CONTROL	_					3. CONTRACTOR SHALL BE RE
TF/TRAN	TRANSFORMER	E POTENTIAL (VOLTS)	PRIMARY ELEMENT		LOCALLY MOUNTED				4. BURIED UTILITIES SHOWN (
UF	UNDERFLOOR	F FLOW RATE G FIRE ALARM	RATIO (FRACTION) GLASS (SIGHT GAUGE)		/ INSTROMENT				APPROXIMATE AND MAY NO
UG	UNDERGROUND	H HAND (MANUALLY)	HIGH						5 THE CONTRACTOR SHALL F
V VED	VOLTS	J POWER	b) INDICATE		CONTROL PANEL				THE GROUND PRIOR TO ST
VP	VAPOR PROOF	K TIME	LEAK, LOW		MOUNTED INSTRUMENT				FOUND BETWEEN EXISTING
WHT	WHITE	M MOISTURE/HUMIDIT	Y LIGHT (PILOT)				_		6.FARALLON SHALL BE NOTIF
WP	WEATHER PROOF	P PRESSURE/VACUUM	POINT (TEST CONNECTION						
XP	EXPLOSION PROOF	Q QUANTITY	INTEGRATE (TOTALIZE)		1		DE IN. MOO		PERSONS AND PROPERTY I
		S SPEED	SWITCH	-10	PLC SHUTDOWN ALARM		OF WASHING CONTRACTOR		STRUCTURES, UTILITIES, AI
		U MULTIVARIABLE	MULTIFUNCTION						KEQUIKEMENT SHALL APPL NORMAL WORKING HOURS.
		V VIBRATION/VOLUME W WEIGHT/FORCE/TOP	VALVE/DAMPER						
		X UNCLASSIFIED				— I			8. ALL EXCAVATIONS SHALL B OCCUPATIONAL SAFETY AN
		Z POSITION	DRIVE/ACTUATE			1			ACT (WISHA) REGULATIONS
		1							OPERATIONS.

9. NO TRENCHES SHALL BE LEFT OPEN WHEN WORK IS NOT IN PROGRESS. ALL OPEN EXCAVATIONS SHALL BE FENCED.

	Washington Issaquah Bellingham Seattle	
	Oregon Portland Bend	
FARALLON	California Oakland Sacramento Irvine	
Quality Service for Environment	al Solutions farallonconsulting.com	

9/25/14	ISSUED FOR CLIENT REVIEW	CM/DEW	CM	
DATE	DESCRIPTION	BY	CKD.	APP

LECTRICAL AND EQUIPMENT SYMBOLS

DESIGN DRAWINGS AND SPECIFICATIONS SHALL BE MAINTAINED ON THE JOB SITE AT ALL TIMES.

SHALL BE MAINTAINED ON THE JOB SITE AT ALL TIMES. THE CONTRACTOR SHALL COMPLY WITH

RESPONSIBLE FOR VERIFYING ALL DIMENSIONS.

ON THE DRAWINGS ARE FOR GENERAL INFORMATION ONLY. UTILITY LOCATIONS ARE IOT BE INCLUSIVE OF ALL UTILITIES THAT EXIST ON THE PROPERTY.

HAVE A PRIVATE UTILITY LOCATE SERVICE VERIFY ALL UTILITIES AND MARK THEIR LOCATIONS ON TARTING CONSTRUCTION. FARALLON SHALL BE CONTACTED IMMEDIATELY IF A CONFLICT IS G UTILITIES AND THE PROJECT DESIGN.

FIED OF DISCREPANCIES BETWEEN CONTRACT DRAWINGS AND ACTUAL SITE CONDITIONS.

ASSUME RESPONSIBILITY FOR THE JOB SITE CONDITIONS AND ENSURE THE SAFETY OF ALL FOR THE DURATION OF ON SITE PROJECT WORK. THE CONTRACTOR SHALL PROTECT AND PAVING FROM DAMAGE, DIRECT OR INDIRECT, RESULTING FROM THE WORK. THIS PLY CONTINUOUSLY OVER THE DURATION OF ON SITE ACTIVITIES AND NOT BE LIMITED TO 5.

BE PERFORMED IN STRICT ACCORDANCE WITH APPLICABLE U.S. DEPARTMENT OF LABOR ND HEALTH ADMINISTRATION (OSHA) AND THE WASHINGTON INDUSTRIAL SAFETY AND HEALTH IS. THE CONTRACTOR ASSUMES FULL RESPONSIBILITY FOR THE SAFETY OF ALL CONSTRUCTION

PREPARED FOR

CAPITAL INDUSTRIES,INC. 5801 3RD AVE. SOUTH SEATTLE, WA 98108 SUB-SLAB DEPRESSURIZATION SYSTEM AS SHOWN

GENERAL NOTES, LEGEND,SYMBOLS, AND ABBREVIATIONS SCALE AS SHOWN PROJECT NO. 457-007 FILE NAME: SYSTEM.dwg SHEET NO. OF 2

4

11/3/14	REISSUED FOR CLIENT REVIEW	ROL/DEW	СМ	
9/25/14	ISSUED FOR CLIENT REVIEW	CM/DEW	RM	
DATE	DESCRIPTION	BY	CKD.	APP.

CAPITAL INDUSTRIES, INC. 5801 3RD AVE, SOUTH SEATTLE, WA 98108

SUB-SLAB DEPRESSURIZATION SYSTEM AS SHOWN

PROJECT NO. 457-007 FILE NAME: SYSTEM.dwg SHEET NO. OF 4 4

SCALE

DETAILS

APPENDIX B PHOTOGRAPHS

VAPOR INTRUSION MITIGATION MEASURES STATUS REPORT Pacific Food Systems, Inc. North Building 5815 Fourth Avenue South Seattle, Washington

Farallon PN: 457-007

California Oakland | Sacramento | Irvine

PHOTOGRAPHS Vapor Intrusion Mitigation Measures Status Report Pacific Food Systems, Inc. North Building Seattle, Washington Farallon PN: 457-007

- Photograph 1: Subslab depressurization system (SSDS) blower with air inlet valve and filter, and outdoor piping.
- Photograph 2: SSDS pressure gauge and indoor piping.
- Photograph 3: SSDS sump connection (east sump).
- Photograph 4: Subslab monitoring port, in differential pressure monitoring configuration.
- Photograph 5: Subslab monitoring port, in secured configuration.
- Photograph 6: SSDS vent stack.
- Photograph 7: Roof of Capital Industries, Inc. Plant 4, southwest of SSDS vent stack.
- Photograph 8: Roof of Capital Industries, Inc. Plant 4, west of SSDS vent stack.
- Photograph 9: Sewer vent on roof of Pacific Food Systems, Inc. North Building (1 of 2).
- Photograph 10: Sewer vent on roof of Pacific Food Systems, Inc. North Building (2 of 2).
- Photograph 11: Roof of Pacific Food Systems, Inc. North Building with SSDS vent stack.
- Photograph 12: SSDS vent stack height above roof of Pacific Food Systems, Inc. North Building.

1

Photograph 1: Subslab depressurization system (SSDS) blower with air inlet valve and filter, and outdoor piping.

Photograph 2: SSDS pressure gauge and indoor piping.

2

P:\457 Capital Indust\457007 Rem Inv Monitoring\Reports\2017 Pacific Foods SSDS Rpt\Apx B Photos\Apx B Photos.doc

Photograph 3: SSDS sump connection (east sump).

Photograph 4: Subslab monitoring port, in differential pressure monitoring configuration.

Photograph 5: Subslab monitoring port, in secured configuration.

Photograph 6: SSDS vent stack.

Photograph 7: Roof of Capital Industries, Inc. Plant 4, southwest of SSDS vent stack.

Photograph 8: Roof of Capital Industries, Inc. Plant 4, west of SSDS vent stack.

Photograph 9: Sewer vent on roof of Pacific Food Systems, Inc. North Building (1 of 2).

Photograph 10: Sewer vent on roof of Pacific Food Systems, Inc. North Building (2 of 2).

Photograph 11: Roof of Pacific Food Systems, Inc. North Building with SSDS vent stack.

Photograph 12: SSDS vent stack height above roof of Pacific Food Systems, Inc. North Building.

APPENDIX C CITY OF SEATTLE ELECTRICAL PERMIT

VAPOR INTRUSION MITIGATION MEASURES STATUS REPORT Pacific Food Systems, Inc. North Building 5815 Fourth Avenue South Seattle, Washington

Farallon PN: 457-007

Project # 6462876

Address	5815 4th Ave S	Permit Number	6462876
Location	WAREHOUSE AREA	Permit Status	Permit Closed
Records Filed At		Application Date	Mar 06, 2015
Application Type	ELECTRICAL	Issue Date	Mar 06, 2015
Work Type	FIELD REVIEW	Expiration Date	Mar 05, 2016
Category	COMMERCIAL	Finaled Date	Apr 01, 2015
King Co. Assessor's #			
Zone/Overlays and ECA			
Legal Description		Contractor	ALLIED ELECTRIC SERVICE INC P O BOX 3855 LACEY, WA 98509 ELECTRICAL CONTRACTOR LICENSE: ALLIEES145BC
Description of Work	INSTALL CIRCUIT FOR SINGLE PHASE BLOWER. 3/27/15 JCB; ADDRESS CHANGED FROM 5801 3RD AVE S.	Permit Remarks	

Low Voltage and Communication Systems			Transformers					
Туре	# Control Units		# of Devices	Qty		Size		
-				-				
Servic	es			Electric	Heate	rs		
Qty		Size		Qty		Size		
-				-				
Feede	rs			Motors		1		
Qty		Size		Qty		Size		
-				-				
Conne	ections							
	Receptacles	0	Light Outlets 0			Switches 0	Fixtures	0
	Residential Fans	0	Track Lighting 0	Mul	ti-Outle	t Assy (ft) 0	Smoke Detectors	0
Device	es and Branch Circu	its						
	Floodlights	0	Dimmers (Comr	cl 2000W+)	0	Dedicated Ap	pliances 15-25 Amp	1
	Furnaces (non-elec)	0	9	Sign Circuits	0	Dedicated Ap	opliances 30-50 Amp	0
Fire Al	larm Info							
	Fire Alarm Devices	0				Fire	Alarm Control Units	0
Renew	vable Energy							
	Range	Qty						

0-6 KW 0

7-26 KW 0

Project # 6462876

Inspections

Required Inspections - Not Yet Scheduled

Туре		Comments
None		

Required Inspections - Scheduled

Туре	Date	Inspector	Comments
None			

Completed Inspections

(Multiple same-type inspections may be required to complete a project)

Туре	Date	Result	Inspector	Comments
FINAL	Mar 10, 2015	Failed	ZOOKR	03/09/2015 WEBUSR Contact : Steve Koster - 360-789-1888 3-10-15 BZ Not at this address - called contact number left voice message to call me at 206-233-7864
FINAL	Mar 23, 2015	Partial Pass	ZOOKR	03/20/2015 WEBUSR Contact : Steve Koster - 360-789-1888 3-23-15 BZ (1) need address correction to 5815 4Th Ave. S (2) need phenolic lable on disconect
FINAL	Apr 01, 2015	Passed	ZOOKR	

Waived Inspections

Туре	Comments
COVER	3-23-15 BZ not required = surface

Definition of Terms

COVER	This inspection type is performed for all installations which require approval before closing walls, ceilings, floors or underground.
FINAL	All permits require a final inspection to certify that the work performed is in compliance with applicable codes.
PARTIAL PASS	Area of work inspected passed and additional inspections of this type are required - move ahead with corrections/conditions

APPENDIX D SUBSLAB DEPRESSURIZATION SYSTEM INSPECTION FORMS

VAPOR INTRUSION MITIGATION MEASURES STATUS REPORT Pacific Food Systems, Inc. North Building 5815 Fourth Avenue South Seattle, Washington

Farallon PN: 457-007

Subslab Depressurization System Inspection Form

Date and Time: 4/1/2015 @ 1035 Location: PFS-NORTH AVILID

PART 1 - DOCUMENTATION OF CONDITION OF SYSTEM COMPONENTS

Manometer/Pressure Gauge Readings						
Location System Manometer System Vacuum SSMP-1 SSMP-2						
Pressure (IOW)	1.7	1.85	0-025	0.007		

Exterior Pipe Free of Cracks	Y	N	N/A
Blower Running Appropriately (no excess vibration or noise	Ð	N	N/A
Manometer in Good Condition	Y	N	N/A
Caulk on Floor Penetrations in Good Condition		N	N/A
Significant Floor Cracks or Penetrations Observed	Y	D	N/A
Subslab Monitoring Ports Cap Secured	(Y)	N	N/A
Tenant Log Book Properly Completed (make copy of form)	Y	N	N/A

PART 2 - DOCUMENTATION OF STRUCTURAL CHANGES

Any Significant Changes to the Building's HVAC System?	Y	R	N/A
Any new vents or openings in the roof/walls less than 10' away from the stack?	Y		N/A
Any new buildings near the mitigated building close enough that stack gasses could contaminate indoor air?	Y	Z	N/A
Have there been any significant earthquake events?	Y	A	N/A

PART 3 - OTHER OBSERVATIONS/COMMENTS

Comments: <u>SYSTRA STARTUP</u>

Sub-Slab Depressurization System Inspection Form

Date and Time: 2/5/16 @ 920 Location: PACIFIC SEAFeeRS

PART 1 - DOCUMENTATION OF CONDITION OF SYSTEM COMPONENTS

	Manometer/Press	sure Gauge Reading	gs w	6
Location	System Manometer	System Vacuum	SSMP-1	SSMP-2
Pressure (IOW)	4.2	3.9	0.057	0.035
	6.8	6.2	0,100)	0.017

JP FLus 0.005 16.63 SIFM 0.010 23,52 SCFM

SYSTEM

Exterior Pipe Free of Cracks	Y	N	N/A
Blower Running Appropriately (no excess vibration or no	Ø	N	N/A
Manometer in Good Condition	X	N	N/A
Caulk on Floor Penetrations in Good Condition	Ø	N	N/A
Significant Floor Cracks or Penetrations Observed	Y	N	N/A
Sub-Slab Monitoring Ports Cap Secured	Ø	N	N/A

PART 2 - DOCUMENTATION OF STRUCTURAL CHANGES

Any Significant Changes to the Building's HVAC System	Y	N	N/A
Any new vents or openings in the roof/walls less than 10' away from the stack	Y	N	N/A
Any new buildings near the mitigated building close enough that stack gasses could contaminate their indoor	Y	N	N/A
Have there been any significant earthquake events	Y	(N)	N/A

PART 3 - OTHER OBSERVATIONS/COMMENTS

Comments:	SERVE INTROQUE	or PIRILPAS	PANJRA	To
MATCH WALL	color ADJ	UST SYST	in to the	VK
AZ FULLY	(LUSRD, WAIT	10 min	BEFORE FEN	enim
PARSSNES				

Subslab Depressurization System Inspection Form

Date and Time: <u>4/26/16 @ 1000</u> Location: <u>457-007</u>

PART 1 - DOCUMENTATION OF CONDITION OF SYSTEM COMPONENTS

	Manometer/Pr	ressure Gauge Readings	s Shaf	Poor
Location	System Manometer	System Vacuum	SSMP-1	SSMP-2
Pressure (IOW)	6.8	7.210	-0.100	- 0.058

Exterior Pipe Free of Cracks	(Y)	N	N/A
Blower Running Appropriately (no excess vibration or noise	(Ŷ)	N	N/A
Manometer in Good Condition	X	N	N/A
Caulk on Floor Penetrations in Good Condition	Y	N	N/A
Significant Floor Cracks or Penetrations Observed	Y	N	N/A
Subslab Monitoring Ports Cap Secured	Ŷ	N	N/A
Tenant Log Book Properly Completed (make copy of form)	Y	N	N/A

PART 2 - DOCUMENTATION OF STRUCTURAL CHANGES

Any Significant Changes to the Building's HVAC System?	Y	N	N/A
Any new vents or openings in the roof/walls less than 10' away from the stack?	Y	N	N/A
Any new buildings near the mitigated building close enough that stack gasses could contaminate indoor air?	Y	Ń	N/A
Have there been any significant earthquake events?	Y	(N)	N/A

PART 3 - OTHER OBSERVATIONS/COMMENTS

Comments:						
Bleed	in	dir fitter	disty			
_						
1						

Subslab Depressurization System Inspection Form

Date and Time: 1/5/2017 Location: Pacific Food Systems - North building

PART 1 - DOCUMENTATION OF CONDITION OF SYSTEM COMPONENTS

Manometer/Pressure Gauge Readings				
Location System Manometer System Vacuum SSMP-1 SSMP-2				
Pressure (IOW)	1.8	2.177	0.015	0.006
	bouncing - 1 . 6 - 2.2	brighting between		

ncing - 1 - 2 . 2 bouncing between - DP - 0.000

Exterior Pipe Free of Cracks	Ŷ	N	N/A
Blower Running Appropriately (no excess vibration or noise	Ý	N	N/A
Manometer in Good Condition	Ŷ	N	N/A
Caulk on Floor Penetrations in Good Condition	Ŷ	N	N/A
Significant Floor Cracks or Penetrations Observed	Y	N	N/A
Subslab Monitoring Ports Cap Secured	Ŷ	N	N/A
Tenant Log Book Properly Completed (make copy of form)	Y	N	N/A

PART 2 - DOCUMENTATION OF STRUCTURAL CHANGES

Any Significant Changes to the Building's HVAC System?	Y	N	N/A
Any new vents or openings in the roof/walls less than 10' away from the stack?	Y	N	N/A
Any new buildings near the mitigated building close enough that stack gasses could contaminate indoor air?	Y	N	N/A
Have there been any significant earthquake events?	Y	N	N/A

PART 3 - OTHER OBSERVATIONS/COMMENTS

Comments:	Metal Shav	ings were	cleaned	out of	SSMP-2.
Filler for	compressor	dar 141	u		•

APPENDIX E LABORATORY ANALYTICAL REPORTS

VAPOR INTRUSION MITIGATION MEASURES STATUS REPORT Pacific Food Systems, Inc. North Building 5815 Fourth Avenue South Seattle, Washington

Farallon PN: 457-007

6/22/2015 Mr. Jeffrey Kaspar Farallon Consulting, LLC 975 Fifth Avenue NW

Issaquah WA 98027-3333

Project Name: CAPITAL Project #: 457-007 Workorder #: 1506185A

Dear Mr. Jeffrey Kaspar

The following report includes the data for the above referenced project for sample(s) received on 6/9/2015 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 SIM are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Killy Butte

Kelly Buettner Project Manager

A Eurofins Lancaster Laboratories Company

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1506185A

Work Order Summary

CLIENT:	Mr. Jeffrey Kaspar Farallon Consulting, LLC 975 Fifth Avenue NW Issaquah, WA 98027-3333	BILL TO: Mr. Jeffrey Farallon Co 975 Fifth A Issaquah, V	Kaspar onsulting, LLC venue NW VA 98027-3333	
PHONE:	425-295-0808	P.O. #		
FAX:	425-427-0067	PROJECT # 457-007 C/	APITAL	
DATE RECEIVED	06/09/2015			
DATE COMPLET	ED: 06/22/2015	CONTACT: Kelly Buet	ner	
			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	IA1-34406-060115	Modified TO-15 SIM	4.3 "Hg	4.9 psi
02A	IA2-9419-060115	Modified TO-15 SIM	4.1 "Hg	5.1 psi
03A	IA3-R-18-060115	Modified TO-15 SIM	4.9 "Hg	5 psi
04A	AA1-33541-060115	Modified TO-15 SIM	3.9 "Hg	4.9 psi
05A	AA2-4383-060115	Modified TO-15 SIM	0.6 "Hg	5.1 psi
06A	IA4-9561-060115	Modified TO-15 SIM	4.5 "Hg	4.9 psi
07A	IA5-34741-060115	Modified TO-15 SIM	3.3 "Hg	4.6 psi
08A	IA6-22497-060115	Modified TO-15 SIM	4.7 "Hg	4.9 psi
09A	IA7-34758-060115	Modified TO-15 SIM	4.3 "Hg	5.1 psi
10A	AA3-96113-060115	Modified TO-15 SIM	4.1 "Hg	4.8 psi
11A	IA8-33937-060215	Modified TO-15 SIM	5.1 "Hg	4.8 psi
12A	IA9-34348-060215	Modified TO-15 SIM	4.5 "Hg	4.9 psi
13A	AA4-34322-060215	Modified TO-15 SIM	3.9 "Hg	5 psi
14A	Lab Blank	Modified TO-15 SIM	NA	ŇĂ
15A	CCV	Modified TO-15 SIM	NA	NA
16A	LCS	Modified TO-15 SIM	NA	NA
16AA	LCSD	Modified TO-15 SIM	NA	NA

CERTIFIED BY:

layes

06/22/15 DATE:

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704343-14-7, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2014, Expiration date: 10/17/2015. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563

(916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 SIM Farallon Consulting, LLC Workorder# 1506185A

Thirteen 6 Liter Summa Canister (SIM Certified) samples were received on June 09, 2015. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the SIM acquisition mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	Project specific; default criteria is = 30% Difference<br with 10% of compounds allowed out up to =40%.; flag<br and narrate outliers
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

🛟 eurofins

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

J - Estimated value.

- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: IA1-34406-060115

Lab ID#: 1506185A-01A No Detections Were Found.

Client Sample ID: IA2-9419-060115

Lab ID#: 1506185A-02A No Detections Were Found.

Client Sample ID: IA3-R-18-060115

Lab ID#: 1506185A-03A No Detections Were Found.

Client Sample ID: AA1-33541-060115

Lab ID#: 1506185A-04A No Detections Were Found.

Client Sample ID: AA2-4383-060115

Lab ID#: 1506185A-05A No Detections Were Found.

Client Sample ID: IA4-9561-060115

Lab ID#: 1506185A-06A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Trichloroethene	0.031	0.64	0.17	3.5
Tetrachloroethene	0.031	0.073	0.21	0.49

Client Sample ID: IA5-34741-060115

Lab ID#: 1506185A-07A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Trichloroethene	0.029	0.42	0.16	2.2
Tetrachloroethene	0.029	0.063	0.20	0.43

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM

Client Sample ID: IA6-22497-060115

Lab ID#: 1506185A-08A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Trichloroethene	0.032	0.37	0.17	2.0
Tetrachloroethene	0.032	0.057	0.21	0.39

Client Sample ID: IA7-34758-060115

Lab ID#: 1506185A-09A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Trichloroethene	0.031	0.36	0.17	1.9
Tetrachloroethene	0.031	0.16	0.21	1.1

Client Sample ID: AA3-96113-060115

Lab ID#: 1506185A-10A

Compound	Rpt. Limit	Amount (ppby)	Rpt. Limit (ua/m3)	Amount (ug/m3)
Trichloroethene	0.031	0.54	0.16	2.9

Client Sample ID: IA8-33937-060215

Lab ID#: 1506185A-11A

No Detections Were Found.

Client Sample ID: IA9-34348-060215

Lab ID#: 1506185A-12A

No Detections Were Found.

Client Sample ID: AA4-34322-060215

Lab ID#: 1506185A-13A No Detections Were Found.

Client Sample ID: IA1-34406-060115 Lab ID#: 1506185A-01A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061522sim 1.56	Date of Collection: 6/1/15 8:19:00 AM Date of Analysis: 6/16/15 08:29 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.062	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.031	Not Detected	0.17	Not Detected
Tetrachloroethene	0.031	Not Detected	0.21	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.62	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: IA2-9419-060115 Lab ID#: 1506185A-02A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name:v061509simDil. Factor:1.56		Date of Collection: 6/1/15 8:26:00 AM Date of Analysis: 6/15/15 03:57 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.062	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.031	Not Detected	0.17	Not Detected
Tetrachloroethene	0.031	Not Detected	0.21	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.62	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	92	70-130	

Client Sample ID: IA3-R-18-060115 Lab ID#: 1506185A-03A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061510sim 1.60	Date Date	ate of Collection: 6/1/15 8:31:00 AM ate of Analysis: 6/15/15 04:34 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.063	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
Trichloroethene	0.032	Not Detected	0.17	Not Detected
Tetrachloroethene	0.032	Not Detected	0.22	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	91	70-130	

Client Sample ID: AA1-33541-060115 Lab ID#: 1506185A-04A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061507sim 1.53	Date Date	Date of Collection: 6/1/15 8:40:00 AM Date of Analysis: 6/15/15 02:14 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.015	Not Detected	0.039	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.061	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.031	Not Detected	0.16	Not Detected
Tetrachloroethene	0.031	Not Detected	0.21	Not Detected
trans-1,2-Dichloroethene	0.15	Not Detected	0.61	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: AA2-4383-060115 Lab ID#: 1506185A-05A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061511sim 1.38	sim Date of Collection: 6/1/15 8:45: 1.38 Date of Analysis: 6/15/15 05:23		/15 8:45:00 AM /15 05:23 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.014	Not Detected	0.035	Not Detected
1,1-Dichloroethene	0.014	Not Detected	0.055	Not Detected
cis-1,2-Dichloroethene	0.028	Not Detected	0.11	Not Detected
Trichloroethene	0.028	Not Detected	0.15	Not Detected
Tetrachloroethene	0.028	Not Detected	0.19	Not Detected
trans-1,2-Dichloroethene	0.14	Not Detected	0.55	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: IA4-9561-060115 Lab ID#: 1506185A-06A MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name: Dil. Factor:	v061512sim 1.57	Date of Collection: 6/1/15 9:00:00 AM Date of Analysis: 6/15/15 05:59 PM		
Compound Rpt. Limit (ppbv)		Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.062	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.031	0.64	0.17	3.5
Tetrachloroethene	0.031	0.073	0.21	0.49
trans-1,2-Dichloroethene	0.16	Not Detected	0.62	Not Detected

٦

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: IA5-34741-060115 Lab ID#: 1506185A-07A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061513sim 1.47	Date of Collection: 6/1/15 9:05:00 AM Date of Analysis: 6/15/15 06:34 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.015	Not Detected	0.038	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.058	Not Detected
cis-1,2-Dichloroethene	0.029	Not Detected	0.12	Not Detected
Trichloroethene	0.029	0.42	0.16	2.2
Tetrachloroethene	0.029	0.063	0.20	0.43
trans-1,2-Dichloroethene	0.15	Not Detected	0.58	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: IA6-22497-060115 Lab ID#: 1506185A-08A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061514sim 1.58	Date of Collection: 6/1/15 9:14:00 AM Date of Analysis: 6/15/15 07:20 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.063	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.12	Not Detected
Trichloroethene	0.032	0.37	0.17	2.0
Tetrachloroethene	0.032	0.057	0.21	0.39
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	116	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: IA7-34758-060115 Lab ID#: 1506185A-09A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061515sim 1.57	Date of Collection: 6/1/15 9:16:00 AM Date of Analysis: 6/15/15 08:22 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.062	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.031	0.36	0.17	1.9
Tetrachloroethene	0.031	0.16	0.21	1.1
trans-1,2-Dichloroethene	0.16	Not Detected	0.62	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	117	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: AA3-96113-060115 Lab ID#: 1506185A-10A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061516sim 1.54	Date of Collection: 6/1/15 9:26:00 AM Date of Analysis: 6/15/15 09:12 PM		
Rpt. Limit Compound (ppbv)		Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.015	Not Detected	0.039	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.061	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.031	0.54	0.16	2.9
Tetrachloroethene	0.031	Not Detected	0.21	Not Detected
trans-1,2-Dichloroethene	0.15	Not Detected	0.61	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: IA8-33937-060215 Lab ID#: 1506185A-11A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061517sim 1.60	Date Date	ate of Collection: 6/2/15 7:50:00 AM ate of Analysis: 6/15/15 10:04 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.063	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
Trichloroethene	0.032	Not Detected	0.17	Not Detected
Tetrachloroethene	0.032	Not Detected	0.22	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: IA9-34348-060215 Lab ID#: 1506185A-12A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061518sim Date of Collection: 6/2/15 7:58:0 1.57 Date of Analysis: 6/15/15 10:41		2/15 7:58:00 AM /15 10:41 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.062	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.031	Not Detected	0.17	Not Detected
Tetrachloroethene	0.031	Not Detected	0.21	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.62	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	112	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: AA4-34322-060215 Lab ID#: 1506185A-13A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061508sim 1.54	im Date o .54 Date o		/15 8:05:00 AM /15 02:52 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.015	Not Detected	0.039	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.061	Not Detected
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
Trichloroethene	0.031	Not Detected	0.16	Not Detected
Tetrachloroethene	0.031	Not Detected	0.21	Not Detected
trans-1,2-Dichloroethene	0.15	Not Detected	0.61	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: Lab Blank Lab ID#: 1506185A-14A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061506sim 1.00	Date of Collection: NA Date of Analysis: 6/15/15 12:23 PM				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)		
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected		
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected		
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected		
Trichloroethene	0.020	Not Detected	0.11	Not Detected		
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected		
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected		

		Method		
Surrogates	%Recovery	Limits		
1,2-Dichloroethane-d4	113	70-130		
Toluene-d8	103	70-130		
4-Bromofluorobenzene	96	70-130		

Client Sample ID: CCV Lab ID#: 1506185A-15A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061503sim 1.00	Date of Collection: NA Date of Analysis: 6/15/15 10:09 AM
Compound		%Recovery
Vinyl Chloride		85
1,1-Dichloroethene		108
cis-1,2-Dichloroethene		109
Trichloroethene		95
Tetrachloroethene		93
trans-1,2-Dichloroethene		110

		Method		
Surrogates	%Recovery	Limits		
1,2-Dichloroethane-d4	114	70-130		
Toluene-d8	103	70-130		
4-Bromofluorobenzene	98	70-130		

Client Sample ID: LCS Lab ID#: 1506185A-16A MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061504sim 1.00	Date of Collection: NA Date of Analysis: 6/15/15 10:51 AM		
Compound		%Recovery	Method Limits	
Vinyl Chloride		84	70-130	
1,1-Dichloroethene		108	70-130	
cis-1,2-Dichloroethene		119	70-130	
Trichloroethene		92	70-130	
Tetrachloroethene		92	70-130	
trans-1,2-Dichloroethene		94	70-130	

		Method		
Surrogates	%Recovery	Limits		
1,2-Dichloroethane-d4	114	70-130		
Toluene-d8	101	70-130		
4-Bromofluorobenzene	96	70-130		

Client Sample ID: LCSD Lab ID#: 1506185A-16AA MODIFIED EPA METHOD TO-15 GC/MS SIM

٦

File Name: Dil. Factor:	v061505sim 1.00	Date of Collec Date of Analy	Date of Collection: NA Date of Analysis: 6/15/15 11:34 AM		
Compound		%Recovery	Method Limits		
Vinyl Chloride		89	70-130		
1,1-Dichloroethene		100	70-130		
cis-1,2-Dichloroethene		116	70-130		
Trichloroethene		94	70-130		
Tetrachloroethene		90	70-130		
trans-1,2-Dichloroethene		89	70-130		

		Method		
Surrogates	%Recovery	Limits		
1,2-Dichloroethane-d4	112	70-130		
Toluene-d8	106	70-130		
4-Bromofluorobenzene	99	70-130		

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Farallon Consulting Jeff Kaspar 975 5th Ave NW Issaquah, WA 98027

RE: Capital Industries Lab ID: 1512007

December 07, 2015

Attention Jeff Kaspar:

Fremont Analytical, Inc. received 10 sample(s) on 12/1/2015 for the analyses presented in the following report.

Volatile Organic Compounds-EPA Method TO-15 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mille Rody

Mike Ridgeway President

CLIENT: Project: Lab Order:	Farallon Consulting Capital Industries 1512007	Work Order Sample Summary				
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received			
1512007-001	AA1-15423-113015	11/30/2015 9:04 AM	12/01/2015 2:00 PM			
1512007-002	IA5-15899-113015	11/30/2015 8:36 AM	12/01/2015 2:00 PM			
1512007-003	AA2-17234-113015	11/30/2015 9:16 AM	12/01/2015 2:00 PM			
1512007-004	IA2-17241-113015	11/30/2015 8:04 AM	12/01/2015 2:00 PM			
1512007-005	IA3-17244-113015	11/30/2015 8:09 AM	12/01/2015 2:00 PM			
1512007-006	AA3-17638-113015	11/30/2015 9:23 AM	12/01/2015 2:00 PM			
1512007-007	IA1-17641-113015	11/30/2015 7:58 AM	12/01/2015 2:00 PM			
1512007-008	IA7-17643-113015	11/30/2015 8:44 AM	12/01/2015 2:00 PM			
1512007-009	IA4-17646-113015	11/30/2015 8:32 AM	12/01/2015 2:00 PM			
1512007-010	IA6-17647-113015	11/30/2015 8:41 AM	12/01/2015 2:00 PM			

Case Narrative

WO#: **1512007** Date: **12/7/2015**

CLIENT:Farallon ConsultingProject:Capital Industries

WorkOrder Narrative: I. SAMPLE RECEIPT: Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS: Air samples are reported in ppbv and ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Qualifiers & Acronyms

WO#: **1512007** Date Reported: **12/7/2015**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery CCB - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV** - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Client: WorkOrder: Project:	Farallo 151200 Capital	on Consulting)7 Industries									
Client Sample	e ID:	AA1-15423-1130)15				Date Sa	ampled:	11/30	/2015	
Lab ID:		1512007-001A					Date Re	eceived:	12/1/2	2015	
Sample Type:		Summa Canister	r								
Analyte			Concen	tration	Reportir	ıg Limit	Qual	Meth	od	Date/Analy	st
Volatile Orga	nic Com	pounds-EPA Met	hod TO-15	<u>(SIM)</u>							
			(ppbv)	(ug/m³)	(ppbv)	(ug/m³)					
1,1-Dichloroethe	ene (DCE)		<0.00900	<0.0357	0.00900	0.0357		EPA-TO-	15SIM	12/04/2015	JY
cis-1,2-Dichloro	ethene		<0.0200	<0.0793	0.0200	0.0793		EPA-TO-	-15SIM	12/04/2015	JY
	()										

Tetrachloroethene (PCE)	<0.0500	<0.339	0.0500	0.339	EPA-TO-15SIM	12/04/2015	JY
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	12/04/2015	JY
Trichloroethene (TCE)	<0.0170	<0.0914	0.0170	0.0914	EPA-TO-15SIM	12/04/2015	JY
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	12/04/2015	JY
Surr: 4-Bromofluorobenzene	89.6 %Rec		70-130		EPA-TO-15SIM	12/04/2015	JY

Client: WorkOrder: Project:	Farallo 151200 Capital	on Consulting 07 Industries							
Client Sample	D:	IA5-15899-11301	5				Date Sa	mpled: 11/3	0/2015
Lab ID:		1512007-002A					Date Re	ceived: 12/1	/2015
Sample Type:	1	Summa Canister							
Analyte			Concen	tration	Reporti	ng Limit	Qual	Method	Date/Analyst
Volatile Orga	nic Com	pounds-EPA Meth	nod TO-1	5 (SIM)					
			(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
4.4.5			~ ~ ~ ~ ~ ~	0.0057					1 10/01/0015 IV

1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357	EPA-TO-15SIM	12/04/2015	JY
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM	12/04/2015	JY
Tetrachloroethene (PCE)	0.0787	0.534	0.0500	0.339	EPA-TO-15SIM	12/04/2015	JY
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	12/04/2015	JY
Trichloroethene (TCE)	0.181	0.971	0.0170	0.0914	EPA-TO-15SIM	12/04/2015	JY
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	12/04/2015	JY
Surr: 4-Bromofluorobenzene	88.9 %Rec		70-130		EPA-TO-15SIM	12/04/2015	JY

Tetrachloroethene (PCE)

trans-1,2-Dichloroethene

Surr: 4-Bromofluorobenzene

Trichloroethene (TCE)

Vinyl chloride

Client: WorkOrder: Project:	Farallo 15120 Capita	on Consulting 07 I Industries								
Client Sample	D:	AA2-17234-1130	15				Date Sa	mpled: 11/30	/2015	
Lab ID:		1512007-003A					Date Re	ceived: 12/1/2	2015	
Sample Type: Summa Car		Summa Canister								
Analyte			Concen	tration	Reportir	ng Limit	Qual	Method	Date/Analy	rst
Volatile Orga	nic Com	pounds-EPA Met	hod TO-15	5 (SIM)						
		••••••	(vdqq)	(uq/m³)	(vdqq)	(uq/m³)				
1,1-Dichloroethe	ene (DCE) .	<0.00900	<0.0357	0.00900	0.0357		EPA-TO-15SIM	12/04/2015	JY
cis-1,2-Dichloroe	ethene		<0.0200	<0.0793	0.0200	0.0793		EPA-TO-15SIM	12/04/2015	JY

0.0500

0.00600

0.0170

0.0850

70-130

0.339

0.0238

0.0914

0.217

--

EPA-TO-15SIM 12/04/2015

EPA-TO-15SIM 12/04/2015

EPA-TO-15SIM 12/04/2015

EPA-TO-15SIM 12/04/2015

EPA-TO-15SIM 12/04/2015

JY

JY

JY

JY

JY

<0.339

< 0.0238

< 0.0914

<0.217

< 0.0500

< 0.00600

<0.0170

< 0.0850

88.9 %Rec

Client: WorkOrder:	Farallo 151200	n Consulting								
Project:	Capital	Industries								
Client Sample	ID:	IA2-17241-11301	5				Date Sa	ampled: 11/30	/2015	
Lab ID:		1512007-004A					Date Re	eceived: 12/1/2	2015	
Sample Type:		Summa Canister								
Analyte			Concent	ration	Reportin	g Limit	Qual	Method	Date/Analy	st
Volatile Organ	nic Com	oounds-EPA Meth	od TO-15	<u>(SIM)</u>						
			(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1-Dichloroethe	ne (DCE)	<	0.00900	<0.0357	0.00900	0.0357		EPA-TO-15SIM	12/04/2015	JY

(j: 2101110100110110 (202)	40100000		0.00000	0.0001			•.
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM	12/04/2015	JY
Tetrachloroethene (PCE)	0.0712	0.483	0.0500	0.339	EPA-TO-15SIM	12/04/2015	JY
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	12/04/2015	JY
Trichloroethene (TCE)	<0.0170	<0.0914	0.0170	0.0914	EPA-TO-15SIM	12/04/2015	JY
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	12/04/2015	JY
Surr: 4-Bromofluorobenzene	93.9 %Rec		70-130		EPA-TO-15SIM	12/04/2015	JY

Client: WorkOrder:	Farallo 151200	n Consulting 7								
Project:	Capital	Industries								
Client Sample	ID:	IA3-17244-11301	5				Date Sa	ampled: 11/3	0/2015	
Lab ID:		1512007-005A					Date Re	ceived: 12/1	/2015	
Sample Type:		Summa Canister								
Analyte			Concen	tration	Reportir	ng Limit	Qual	Method	Date/Analy	/st
Volatile Organ	nic Com	oounds-EPA Meth	nod TO-1	5 (SIM)						
			(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1-Dichloroethe	ne (DCE)	<	:0.00900	<0.0357	0.00900	0.0357		EPA-TO-15SIM	1 12/04/2015	JY

	10.00000	10.0001	0.00000	0.0007		12/01/2010	•••
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM	12/04/2015	JY
Tetrachloroethene (PCE)	0.0660	0.448	0.0500	0.339	EPA-TO-15SIM	12/04/2015	JY
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	12/04/2015	JY
Trichloroethene (TCE)	<0.0170	<0.0914	0.0170	0.0914	EPA-TO-15SIM	12/04/2015	JY
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	12/04/2015	JY
Surr: 4-Bromofluorobenzene	91.0 %Rec		70-130		EPA-TO-15SIM	12/04/2015	JY

Client: WorkOrder: Project:	Farallo 151200 Capital	n Consulting 07 Industries								
Client Sample	e ID:	AA3-17638-113	015				Date Sa	ampled: 11/3	0/2015	
Lab ID:		1512007-006A					Date Re	eceived: 12/1	/2015	
Sample Type:		Summa Caniste	r							
Analyte			Concen	tration	Reporti	ng Limit	Qual	Method	Date/Analy	st
Volatile Orga	nic Com	oounds-EPA Me	thod TO-1	5 (SIM)						
			(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1 1 Dichlorooth			<0.00000	<0.0257	0 00000	0.0257			1 12/05/2015	IV

1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357	EPA-TO-15SIM	12/05/2015	JY
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM	12/05/2015	JY
Tetrachloroethene (PCE)	0.0521	0.353	0.0500	0.339	EPA-TO-15SIM	12/05/2015	JY
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	12/05/2015	JY
Trichloroethene (TCE)	<0.0170	<0.0914	0.0170	0.0914	EPA-TO-15SIM	12/05/2015	JY
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	12/05/2015	JY
Surr: 4-Bromofluorobenzene	90.3 %Rec		70-130		EPA-TO-15SIM	12/05/2015	JY

Client: WorkOrder:	Farallo	n Consulting								
Project:	Capital	Industries								
Client Sample	D:	IA1-17641-11301	5				Date Sa	mpled: 11/30	/2015	
Lab ID:		1512007-007A					Date Re	ceived: 12/1/2	2015	
Sample Type:		Summa Canister								
Analyte			Concent	ration	Reportin	g Limit	Qual	Method	Date/Analy	st
Volatile Orga	nic Com	oounds-EPA Met	nod TO-15	<u>(SIM)</u>						
Volatile Organ	nic Com	oounds-EPA Met	nod TO-15 (ppbv)	<u>(SIM)</u> (ug/m³)	(ppbv)	(ug/m³)				
Volatile Organ	nic Com	oounds-EPA Met	nod TO-15 (ppbv) <0.00900	<u>(SIM)</u> (ug/m³) <0.0357	(ppbv) 0.00900	(ug/m³) 0.0357		EPA-TO-15SIM	12/05/2015	JY

cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM	12/05/2015	JY
Tetrachloroethene (PCE)	0.0602	0.408	0.0500	0.339	EPA-TO-15SIM	12/05/2015	JY
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	12/05/2015	JY
Trichloroethene (TCE)	<0.0170	<0.0914	0.0170	0.0914	EPA-TO-15SIM	12/05/2015	JY
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	12/05/2015	JY
Surr: 4-Bromofluorobenzene	89.4 %Rec		70-130		EPA-TO-15SIM	12/05/2015	JY

Client: WorkOrder: Project:	Farallo 151200 Capital	n Consulting 7 Industries							
Client Sample	D:	IA7-17643-11301	5				Date San	n pled: 11/3	0/2015
Lab ID:		1512007-008A					Date Rec	eived: 12/1	/2015
Sample Type:		Summa Canister							
Analyte			Concent	ration	Reporti	ng Limit	Qual	Method	Date/Analyst
Volatile Orga	nic Com	oounds-EPA Meth	iod TO-15 (ppbv)	<u>(SIM)</u> (ug/m³)	(ppbv)	(ug/m³)			

JY
JY
5 5 5 5 5 5

Client: WorkOrder: Project:	Farallo 151200 Capital	n Consulting 7 Industries							
Client Sample	e ID:	IA4-17646-11301	5				Date San	n pled: 11/3	0/2015
Lab ID:		1512007-009A					Date Rec	eived: 12/1	/2015
Sample Type:		Summa Canister							
Analyte			Concent	ration	Reporti	ng Limit	Qual	Method	Date/Analyst
Volatile Orga	nic Com	oounds-EPA Meth	od TO-15	<u>(SIM)</u>					
			(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			

(pppv)	(ug/m°)	(hhna)	(ug/m²)			
<0.00900	<0.0357	0.00900	0.0357	EPA-TO-15SIM	12/05/2015	JY
<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM	12/05/2015	JY
0.0893	0.606	0.0500	0.339	EPA-TO-15SIM	12/05/2015	JY
<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	12/05/2015	JY
0.175	0.938	0.0170	0.0914	EPA-TO-15SIM	12/05/2015	JY
<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	12/05/2015	JY
87.7 %Rec		70-130		EPA-TO-15SIM	12/05/2015	JY
	<pre><0.00900 <0.0200 0.0893 <0.00600 0.175 <0.0850 87.7 %Rec</pre>	(lg) (lg) <0.00900	(µµµ) (µµµ) (µµµ) <0.00900	(Ipplov) (Igpliv) (Igpliv) (Igpliv) (Igpliv) <0.00900	(IppDV) (IgpTV) (IgpTV) <t< td=""><td>(Ipply) (Ipply) <t< td=""></t<></td></t<>	(Ipply) (Ipply) <t< td=""></t<>

Client: WorkOrder:	Farallo	n Consulting								
Project:	Capital	Industries								
	e aprica									
Client Sample	ID:	IA6-17647-11301	5				Date Sa	ampled: 11/30	0/2015	
Lab ID:		1512007-010A					Date Re	eceived: 12/1/	2015	
Sample Type:		Summa Canister								
Analyte			Concen	tration	Reportir	ng Limit	Qual	Method	Date/Analy	/st
Volatile Orgar	nic Comp	oounds-EPA Meth	nod TO-15	<u>5 (SIM)</u>						
			(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1-Dichloroethe	ne (DCE)	<	:0.00900	<0.0357	0.00900	0.0357		EPA-TO-15SIM	12/05/2015	JY

cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM 12/05/2015	JY
Tetrachloroethene (PCE)	0.123	0.832	0.0500	0.339	EPA-TO-15SIM 12/05/2015	JY
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM 12/05/2015	JY
Trichloroethene (TCE)	<0.0170	<0.0914	0.0170	0.0914	EPA-TO-15SIM 12/05/2015	JY
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM 12/05/2015	JY
Surr: 4-Bromofluorobenzene	79.7 %Rec		70-130		EPA-TO-15SIM 12/05/2015	JY

Work Order: 1512007							C		лмΔ		
CLIENT: Farallon Co	nsulting										
Project: Capital Indu	ustries				V	olatile Org	anic Compou	Inds-EPA	\ Meth	nod TO-1	5 (SIN
Sample ID LCS-R26431	SampType: LCS			Units: ppbv		Prep Date	12/4/2015	Rur	No: 26	6431	
Client ID: LCSW	Batch ID: R26431					Analysis Date	12/4/2015	Sec	γNo: 49	8868	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Re	əf Val	%RPD	RPDLimit	Qual
Vinyl chloride	1.82	0.0850	2.500	0	72.8	70	130				
1,1-Dichloroethene (DCE)	3.18	0.00900	2.500	0	127	70	130				
trans-1,2-Dichloroethene	3.20	0.00600	2.500	0	128	70	130				
cis-1,2-Dichloroethene	3.04	0.0200	2.500	0	122	70	130				
Trichloroethene (TCE)	2.45	0.0170	2.500	0	98.0	70	130				
Tetrachloroethene (PCE)	2.52	0.0500	2.500	0	101	70	130				
Surr: 4-Bromofluorobenzene	9.49		10.00		94.9	70	130				
Sample ID MB-R26431	SampType: MBLK			Units: ppbv		Prep Date	12/4/2015	Rur	nNo: 26	431	
Client ID: MBLKW	Batch ID: R26431					Analysis Date	12/4/2015	Sec	γNo: 49	8869	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Re	əf Val	%RPD	RPDLimit	Qua
Vinyl chloride	ND	0.0850									
1,1-Dichloroethene (DCE)	ND	0.00900									
trans-1,2-Dichloroethene	ND	0.00600									
cis-1,2-Dichloroethene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0170									
Tetrachloroethene (PCE)	ND	0.0500									
Surr: 4-Bromofluorobenzene	8.76		10.00		87.6	70	130				
Sample ID 1512007-001AREP	SampType: REP			Units: ppbv		Prep Date	12/4/2015	Rur	אר No: 26	431	
Client ID: AA1-15423-113015	Batch ID: R26431					Analysis Date	12/4/2015	Sec	γNo: 49	8858	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Re	əf Val	%RPD	RPDLimit	Qua
Vinyl chloride	ND	0.0850						0		30	
1,1-Dichloroethene (DCE)	ND	0.00900						0		30	
trans-1,2-Dichloroethene	ND	0.00600						0		30	
cis-1,2-Dichloroethene	ND	0.0200						0		30	
Trichloroethene (TCE)	ND	0.0170						0		30	
Tetrachloroethene (PCE)	ND	0.0500						0		30	

Work Order:	1512007									00.5			ORT
CLIENT:	Farallon Cor	nsulting											
Project:	Capital Indu	stries					Vo	platile Or	ganic C	ompounds-	EPA Meth	od TO-15	5 (SIM)
Sample ID 151200	7-001AREP	SampType	REP			Units: ppbv		Prep Da	ite: 12/4/20)15	RunNo: 264	431	
Client ID: AA1-15	423-113015	Batch ID:	R26431					Analysis Da	ite: 12/4/20	015	SeqNo: 498	3858	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofluc	orobenzene		8.83		10.00		88.3	70	130		0		

Sample Log-In Check List

Client Name:	FARA	Work Order Num	per: 1512007		
Logged by:	Clare Griggs	Date Received:	12/1/2015	5 2:00:00 PM	
Chain of Cus	stody				
1. Is Chain of	Custody complete?	Yes 🗹	No 🗌	Not Present	
2. How was th	ne sample delivered?	<u>Courier</u>			
Log In					
3. Coolers are	e present?	Yes	No 🔽	NA 🗌	
		Air Samples			
4. Shipping co	ontainer/cooler in good condition?	Yes 🗹	No 🗌		
5. Custody Se (Refer to co	eals present on shipping container/cooler? omments for Custody Seals not intact)	Yes 🗌	No 🗌	Not Required 🗹	
6. Was an atte	empt made to cool the samples?	Yes	No 🗌	NA 🔽	
7. Were all ite	ems received at a temperature of $>0^{\circ}C$ to $10.0^{\circ}C$ *	Yes 🗌	No 🗌	NA 🔽	
8. Sample(s) i	in proper container(s)?	Yes 🗹	No 🗌		
9. Sufficient s	ample volume for indicated test(s)?	Yes 🖌	No		
10. Are sample	es properly preserved?	Yes 🗹	No		
11. Was preser	rvative added to bottles?	Yes	No 🗹	NA 🗌	
12. Is there hea	adspace in the VOA vials?	Yes	No 🗌	NA 🔽	
13. Did all sam	ples containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌		
14. Does paper	rwork match bottle labels?	Yes 🗹	No 🗌		
15. Are matrice	es correctly identified on Chain of Custody?	Yes 🗹	No 🗌		
16. Is it clear w	hat analyses were requested?	Yes 🗹	No 🗌		
17. Were all ho	olding times able to be met?	Yes 🗹	No 🗌		
<u>Special Hanc</u>	dling (if applicable)				
18. Was client	notified of all discrepancies with this order?	Yes	No 🗌	NA 🔽	
Perso	n Notified: Date				
By Wł	hom: Via:	🗌 eMail 📃 Ph	one 🗌 Fax	In Person	
Regar	rding:				
Client	Instructions:				
19. Additional r	remarks:				

Item Information

(m)								1						
11	A via in Cumpulation				Date/Time	1	200	Received				Date/Time	,	telinquished
	PCE, TCE, DCE , AND		400	11	Date/Time	1	X	Received		00	5 12	Date/Time	120	alinquished
Fol	Special Remarks:	begin on	4:00pm will b	oelved after	for samples re ss day.	around times t dowing busine	Jum-		N/A	× z	Seals Intact			Condition:
		Ŭ	Wrench	uridated Tubir	Oylinder Flo	ers Helium	Flow Control	anisters	flar Bags C	ittings Te	ini-Pump F	Manifold M	rcle all that apply):	tental Equipment (Ci
C		15:02	Po:8	theorem	Deptore	11/11/15 15:00					8:09	FR8-20		The state
4	101	2-	12-	Contribution	Print Marking	10 mtorr	Summa	<u>و</u>	8 hr		J'lor /	17244	-113015	TA2-17244
1		14:S9	Q:04	Hagalado	DataTetu	11/11/15 16:00					8:04	FR8-12		
1	4	-6	-30	Spotterer	Treasure	10 mtorr	Summa	6L	8 hr		Wisolic	17241	21-11-11	T02-172
		16:09	9.16	dimited .	Gale(Turo)	11/11/15 16:00					9:16	FR8-11	1- month	H14-1100
1-6	A)	-6	-29	AMBINO .	Press a	10 mtorr	Summa	6L	8 hr		Silorly	17234		ישט ישטפני
		14:25	8:3	circutary.	Datering	11/11/15 16:00					2:36	FR8-08		
-6	12/	-6	-28	Califalite	The second se	10 mtorr	Summa	6L	8 hr		51/08/1	15899	210211-1	TAC-ISM
		16:31	9:04	Hapuato	Cate/Time	11/11/15 16:00 Date					4:0H	FR8-04		
	TO-IS (LEM) (2)	-6	-30	Contante	Bressine.	10 mtorr	Summa	6L	8 hr		Maolie	15423	3-112015	2421-100
eipt Pres	Analysis Requested D	Field Final Sample Pressure (" Hg)	Field Initial Sample Pressure (" Hg)	Equipment Certificaton Code	Pressure at Time of Pick- up (" Hg)	Evacuation Pressure (mtorr)	Container Type **	Sample Volume	Anticipated Fill Time	Gas Matrix Code *	Sample Date & Time	Canister / Flow Reg Serial #	Name	Sample
Internal					Internal									
			Headspace Ja	Services) HJ = Glass	Consult Client	HP = High Pr	iter MiniCan	MC=1L	= Plume Mapp ter Bottle Vac	g BV=1U	1dfill SG = S TB = Tedlar Ba	subslab L=La	6L = Six Liter Cant	* Gas Matrix Codes: ** Container Codes:
is 1	FARALLONCONSULTENS. (RO	てまう	4	Email (PM):		I			Fax	1	5-0900	425-29	Telephone:
	AK	KASA	EFF	PM):	Reports To (F	9800	UA	IQUAH,	PSAT -	City, State, Zip:
		۴	やいろ	0	location:					5	VE NE	STH A	975 9	Address:
121	Collected by: ANDREW TA-	CJ LO	0-15	ء اب	Project Nam Project No:						ng	Consulti	Farallon	Client
	Page: 1	2				6	15	130	Date:		3790 7178	Tel: 206-352- Fax: 206-352	е М. 13	3600 Fremont Av Seattle, WA 9810
	Project No (Internal): 151200	Laboratory (ī						.ren	×
ame	Record - Whole Air S	tody	Cust	ain of	Air Ch									ANA AND

		TAT> STD Rush (specify)						1	0 m						×
						Date/Time		1	Rede yes				Date/Time		Relinquished
	AND	PLE, TLE, DLE, I		COH	S			R	Received		00	12:	Date/Time	N	Relinquished
10F	2	DULY NEED LEW	begin on	4:00pm will t	eceived after	for samples re ses day.	around times ollowing busine	Turn the fe		N/A	εYN	Seals Intac			Condition:
			Ŭ	ng Wrenct	undated Tuble	Cylinder Flo	lers Helium	Flow Control	anisters	ediar Bags C	Fittings To	Ini-Pump	Manifold M	lircle all that apply):	Rental Equipment ((
-			14:34	11:8	Requisitor	Deterting	11/11/15 16:00		1	0		2:41	P/2	510211-1 h	IN-94I
1 	IL/	+	2	12-	Contractor		10 mtorr	Summa	6	28 27		mpalic	17647	1	5
-			ILT:M	2:32		Dayte 1 mar	11/11/15 16:00					22:82	EV1	10-11-01	A1-14T
-7	5		-7	5	Contaitor	Pression	10 mtorr	Summa	۴	8 hr		51/05/1	17646	11 IRAIC	
			34:51	8:44	Sugaro	Date/Tree	11/11/15 18:00					hh:3	FR3-24	CHARLES C	THILIN
6	1g		-6	-30	Consumer	Pression	10 mtorr	Summa	6F	8hr		W/30/15	17643	של בווילמול	
-			14:54	7.58	Reputato	Ode/Term	11/11/15 16:00		4	1000		7.58	FR8-23	1-11-1	1-1-1-167
4	1/1		-6	5	Cartney	Di l'Sidones	10 mtorr	Summa	6L	8 hr		W/20/6	17641	ine in	
6	1	10-15 (571)	12:53	9:23	Reput	Datestina	11/11/15 16:00		5	0		9:23	FR8-22	38-113015	AA3- 176
-	12		-7	-30	Covaria	and the second	10 mtorr	Summa	۶ ۶	8 hr		51/20/15	17638	P INOT	AT
Final Pressure ("Hg)	Receipt Date	Analysis Requested	Field Final Sample Pressure (" Hg)	Field Initial Sample Pressure ("Hg)	Equipment Certificaton Code	Pressure at Time of Pick- up ("Hg)	Evacuation Pressure (mtorr)	Container Type **	Sample Volume	Anticipated Fill Time	Gas Matrix Code *	Sample Date & Time	Canister / Flow Reg Serial #	Name	Sample
ernal	int					Internal									
				Headspace Ja	ervices) HJ = Glass I	Consult Client S essure Cylinder	ty L=LEED(HP=High Pri	iter MiniCan	MC=1L	= Plume Mapp iter Bottle Vac	g BV=1L	B = Tedlar Ba	iubslab L=lan Iter (Summa) T	= Indoor SS = S 6L = Six Liter Canis	 Gas Matrix Codes: Container Codes:
	S.	FARALLEN CONSULT IN	0	(AS PO	2	Email (PM):					Fax:		5-0800	425-29	Telephone:
			ASPAC	EFF K	M: 10	Reports To (F					27	980	HI LA	ISSAGY	City, State, Zip:
1				FITA	5	Location:					5	NI Z	STH AV	5 5Lb	Address:
	HUR	Collected by: ANDRED TH		1-007	4	Project Name Project No:						50	Consultir	Farallon	Client:
		Page:		27	1			N N	1 Soll	Date: 11		7178	Tel: 206-352-3 Fax: 206-352-3	61. .N a	3600 Fremont Av Seattle, WA 9810
1	01	Project No (Internal):	Laboratory P						12	:		E	nalytica	A	E
mpie	1 val	Record - Whole Al	ody H	Cust	ain of	Air Ch						+	D	P	
-	,		-												

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Farallon Consulting

Jeff Kaspar 975 5th Ave NW Issaquah, WA 98027

RE: Capital Industries Lab ID: 1604437

May 04, 2016

Attention Jeff Kaspar:

Fremont Analytical, Inc. received 4 sample(s) on 4/29/2016 for the analyses presented in the following report.

Volatile Organic Compounds-EPA Method TO-15 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Monl c. Kedy

Mike Ridgeway President

DoD/ELAP Certification #L2371, ISO/ICC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Lab Order:	Farallon Consulting Capital Industries 1604437	Work Order Sample Sumn						
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received					
1604437-001	AA1-042616-UW	04/26/2016 5:26 PM	04/29/2016 2:00 PM					
1604437-002	IA1-1042616-Office	04/26/2016 4:58 PM	04/29/2016 2:00 PM					
1604437-003	IA2-1042616-Warehouse	04/26/2016 4:59 PM	04/29/2016 2:00 PM					
1604437-004	SYSTEMINFLUENT-042616	04/26/2016 9:56 AM	04/29/2016 2:00 PM					

Case Narrative

WO#: **1604437** Date: **5/4/2016**

CLIENT:Farallon ConsultingProject:Capital Industries

WorkOrder Narrative: I. SAMPLE RECEIPT: Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS: Air samples are reported in ppbv and ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Qualifiers & Acronyms

WO#: **1604437** Date Reported: **5/4/2016**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL - Reporting Limit RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Client:	Farallo	n Consulting					
WorkOrder:	160443	7					
Project:	Capital	Industries					
Client Sample	ID:	AA1-042616-UW			Date San	n pled: 4/26	/2016
Lab ID:		1604437-001A			Date Rec	eived: 4/29	/2016
Sample Type:							
Analyte			Concentration	Reporting Limit	Qual	Method	Date/Analyst

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM	05/01/2016	I
Tetrachloroethene (PCE)	<0.0500	<0.339	0.0500	0.339	EPA-TO-15SIM	05/01/2016	E
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	05/01/2016	E
Trichloroethene (TCE)	2.75	14.8	0.0170	0.0914	EPA-TO-15SIM	05/01/2016	E
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	05/01/2016	E
Surr: 4-Bromofluorobenzene	94.0 %Rec		70-130		EPA-TO-15SIM	05/01/2016	E

Analyte			Concentration	Reporting Limit	Qual	Method	Date/Analyst	
Sample Type:								
Lab ID:		1604437-002A			Date Ree	ceived: 4/29	/2016	
Client Sample	ID:	IA1-1042616-Offi	се		Date Sar	mpled: 4/26	/2016	
Project:	Capital	Industries						
WorkOrder:	160443	37						
Client:	Farallo	on Consulting						

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM	05/01/2016	BC
Tetrachloroethene (PCE)	0.0700	0.475	0.0500	0.339	EPA-TO-15SIM	05/01/2016	BC
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	05/01/2016	BC
Trichloroethene (TCE)	0.900	4.84	0.0170	0.0914	EPA-TO-15SIM	05/01/2016	BC
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	05/01/2016	BC
Surr: 4-Bromofluorobenzene	95.6 %Rec		70-130		EPA-TO-15SIM	05/01/2016	BC

Client: WorkOrder: Project:	Farallo 160443 Capital	n Consulting 7 Industries							
Client Sample Lab ID: Sample Type:	e ID:	IA2-1042616-Wa 1604437-003A	arehouse				Date Sam Date Rec	npled: 4/26, eived: 4/29,	/2016 /2016
Analyte			Concent	ration	Reportin	g Limit	Qual	Method	Date/Analyst
Volatile Organ	nic Comp	oounds-EPA Met	hod TO-15	<u>(SIM)</u> (ug/m³)	(nnhy)	(ua/m ³)			

(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM	05/01/2016	BC
0.0900	0.610	0.0500	0.339	EPA-TO-15SIM	05/01/2016	BC
<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	05/01/2016	BC
0.870	4.68	0.0170	0.0914	EPA-TO-15SIM	05/01/2016	BC
<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	05/01/2016	BC
96.4 %Rec		70-130		EPA-TO-15SIM	05/01/2016	BC
	(ppbv) <0.0200 0.0900 <0.00600 0.870 <0.0850 96.4 %Rec	(ppbv) (ug/m³) <0.0200	(ppbv) (ug/m³) (ppbv) <0.0200	(ppbv) (ug/m³) (ppbv) (ug/m³) <0.0200	(ppbv) (ug/m³) (ppbv) (ug/m³) <0.0200	(ppbv) (ug/m³) (ppbv) (ug/m³) <0.0200

Client: Farallon Consulting WorkOrder: 1604437 **Project: Capital Industries Client Sample ID:** SYSTEMINFLUENT-042616 Date Sampled: 4/26/2016 Lab ID: 1604437-004A Date Received: 4/29/2016 Sample Type: **Reporting Limit** Date/Analyst Analyte Concentration Qual Method

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
cis-1,2-Dichloroethene	3.25	12.9	0.0200	0.0793	EPA-TO-15SIM	05/01/2016	BC
Tetrachloroethene (PCE)	25.1	170	0.800	5.43	EPA-TO-15SIM	05/03/2016	BC
trans-1,2-Dichloroethene	0.0600	0.238	0.00600	0.0238	EPA-TO-15SIM	05/01/2016	BC
Trichloroethene (TCE)	45.3	243	0.272	1.46	EPA-TO-15SIM	05/03/2016	BC
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	05/01/2016	BC
Surr: 4-Bromofluorobenzene	94.4 %Rec		70-130		EPA-TO-15SIM	05/01/2016	BC

Fremont
Analytical

Work Order: 1604437								00.9	SUMMAI		POR
CLIENT: Farallon Co	onsulting										
Project: Capital Indu	ustries				V	olatile Orga	anic Compo	ounds	-EPA Meth	od TO-1	5 (SII
Sample ID LCS-R29094	SampType: LCS			Units: ppbv		Prep Date:	5/1/2016		RunNo: 29	094	
Client ID: LCSW	Batch ID: R29094					Analysis Date:	5/1/2016		SeqNo: 54	3066	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD F	Ref Val	%RPD	RPDLimit	Qua
Vinyl chloride	2.44	0.0850	2.500	0	97.6	70	130				
trans-1,2-Dichloroethene	2.42	0.00600	2.500	0	96.8	70	130				
cis-1,2-Dichloroethene	2.38	0.0200	2.500	0	95.2	70	130				
Trichloroethene (TCE)	2.40	0.0170	2.500	0	96.0	70	130				
Tetrachloroethene (PCE)	2.49	0.0500	2.500	0	99.6	70	130				
Surr: 4-Bromofluorobenzene	9.74		10.00		97.4	70	130				
Sample ID MB-R29094	SampType: MBLK			Units: ppbv		Prep Date:	5/1/2016		RunNo: 29)94	
Client ID: MBLKW	Batch ID: R29094					Analysis Date:	5/1/2016		SeqNo: 54	8067	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD F	Ref Val	%RPD	RPDLimit	Qua
Vinyl chloride	ND	0.0850									
trans-1,2-Dichloroethene	ND	0.00600									
cis-1,2-Dichloroethene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0170									
Tetrachloroethene (PCE)	ND	0.0500									
Surr: 4-Bromofluorobenzene	9.49		10.00		94.9	70	130				
Sample ID 1604423-001AREP	SampType: REP			Units: ppbv		Prep Date:	5/1/2016		RunNo: 29	094	
Client ID: BATCH	Batch ID: R29094					Analysis Date:	5/1/2016		SeqNo: 54	3059	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD F	Ref Val	%RPD	RPDLimit	Qua
Vinyl chloride	ND	0.0850						0		30	
trans-1,2-Dichloroethene	ND	0.00600						0		30	
cis-1,2-Dichloroethene	ND	0.0200						0		30	
Trichloroethene (TCE)	ND	0.0170						0		30	
Tetrachloroethene (PCE)	ND	0.0500						0		30	
Surr: 4-Bromofluorobenzene	9.60		10.00		96.0	70	130		0		

Work Order:	1604437
CLIENT:	Farallon Consulting

QC SUMMARY REPORT

Project: Capital Industries

Sample ID LCS-B-R29094	SampType: LCS Units: ppt			Units: ppbv	Prep Date: 5/2/2016				RunNo: 29094			
Client ID: LCSW	Batch ID: R29094					Analysis Date: 5/2/2016				SeqNo: 548467		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Trichloroethene (TCE)	2.15	0.0170	2.500	0	86.0	70	130					
Tetrachloroethene (PCE)	2.28	0.0500	2.500	0	91.2	70	130					
Surr: 4-Bromofluorobenzene	9.92		10.00		99.2	70	130					

Sample Log-In Check List

CI	ient Name:	FARA	Work Order Numb	per: 1604437		
Lo	gged by:	Clare Griggs	Date Received:	4/29/2016	2:00:00 PM	
Cha	in of Cust	ody				
1.	Is Chain of C	ustody complete?	Yes 🗌	No 🖌	Not Present	
2.	How was the	sample delivered?	<u>Courier</u>			
Log	In					
3.	Coolers are p	present?	Yes	No 🖌		
0.			Air Samples			
4.	Shipping con	tainer/cooler in good condition?	Yes 🖌	No 🗌		
5.	Custody Seal (Refer to com	ls present on shipping container/cooler? aments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹	
6.	Was an atten	npt made to cool the samples?	Yes	No 🗌	NA 🗹	
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes	No 🗌	NA 🗹	
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌		
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🗹	No 🗌		
10.	Are samples	properly preserved?	Yes 🖌	No 🗌		
11.	Was preserva	ative added to bottles?	Yes	No 🗹	NA 🗌	
12.	Is there head	space in the VOA vials?	Yes	No 🗌	NA 🗹	
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌		
14.	Does paperw	ork match bottle labels?	Yes 🗹	No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🔽	No 🗌		
16.	Is it clear what	at analyses were requested?	Yes 🔽	No 🗌		
17.	Were all hold	ing times able to be met?	Yes 🖌	No 🗌		
Spe	cial Handl	ing (if applicable)				
18.	Was client no	tified of all discrepancies with this order?	Yes	No 🗌	NA 🗹	
	Person	Notified: Date				
	By Who	m: Via:	eMail Ph	one 🗌 Fax 🛛	In Person	
	Regardi	ng:				
	Client Ir	structions:				

Client did not relinquish chain of custody

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

		TAT> STD Rush (specify)						2	×						×
		20			1	Date/Time	111	//	Received				Date/Time		Relinquished
5-1,2 RE	TRAN	RE, TCE, CIS-1,2 RE,	8	2 14:0	ballic	Date/Time	D	Ñ	Received				Date/Time		Relinquished x
		any analyze for.	begin on the	4:00pm will t	ceived after	for samples re day.	-around times the wing business of	Turn follo		N/A	τιΥN	Seals Intac			Condition:
				ng Wrench	uridated Tubir	Cylinder Flo	llers Helium	Flow Contro	Canisters	edlar Bags	Fittings To	lini-Pump	Manifold N	ircle all that apply):	Rental Equipment (C
			Turne	Time	Regulator	Date/Time	Date					Time	Flow Reg	(1
			Pressure	Pressure	Containar	Preserve	Pressure					Date	Canste		/ "
-		51 ⁵	case	0955	Regulator	DaterTime	4/25/16 15:30				C	0956	1921 Mol-H		
È,	2	TOIS SIM	5,0	0.82	Container	Pressure	10 mtorr Pressure	Summa	61		22	HIZGAG	13973 Caniste	ET Martin	A
		(1659	0946	Regulator	Date/Time	4/25/16 15:30 Date		1		ŀ	1659	FR8-25 Flow Reg		
5		TOIS SIM	6.0	+300	Container	Pressure	10 mtorr Prassure	Summa	6L	8 Hr	+	HIZGAL	13972 = Caniste	-EARF#24	3 IAZ-04ZGIG
			8991	0445	Regulator	Date/ Find	4/25/16 15:30 Date)-	1658	FR8-15 Flow Reg	PUTLUE	トライン
Ś		TOIS SIM	5.0	tano	Container	Pressure	10 mtorr Pressure	Summa	6L	8 Hr	ł	HIZCAL	13968 Canata		
	-		1726	1025	Regulator	Date/Time	4/25/16 15:30 Date				H	1726	FR8-08 Flow Reg	0-0W	4A1-04261
5	Hzalle	TOIS SIM A	6.0 Pressure	+30.0	Container	Pressure	10 mtorr	Summa	6L	8 Hr		MARIA	13967 Canister		
("Hg)	Date	Analysis Requested	Pressure (" Hg)	Pressure (" Hg)	Code	up ("Hg)	Pressure (mtorr)	Container Type **	Sample Volume	Anticipated Fill Time	Gas Matrix Code *	Date & Time	Canister / Flow Reg Serial #	Name	Sample
Final	Doppint		Field Final Sample	Field Initial Sample	Equipment	Pressure at	Evacuation			Ś		Sample			
nal	inter.					Internal									
				leadspace Jar	HJ = Glass H	ssure Cylinder	HP = High Pre	Liter MiniCan	C MC=1	iter Bottle Va	ag BV = 1 L	rB = Tedlar B	ster (Summa)	6L = Six Liter Cani	** Container Codes:
		C		-	ervices)	onsult Client S	ty L=LEED (C	Fuel Gas Quali	ping Q =	= Plume Map	Soil Gas M	ndfill SG =	Subslab L = Lar	I = Indoor SS =	Gas Matrix Codes:
		avalph asting Com	ane f	kasp	4	Email (PM):		0.	200	5 295	Fax: 42		0080 51	425 29	Telephone:
			Spour	the tree	M:	Reports To (P					8027	A 9	ah. W	Tean	City, State, Zip:
_		,	w4	attle,	81	Location:						Nu	5th AVE	975 2	Address:
	Our	Collected by: Ryan Ost	7	57-00	Ŧ	Project No:						g	1 Consultii	Farallor	Client:
		ochies	17	Pital	" P	Project Name						8/1/	Fax: 206-352-	3	Seattle, WA 9810
		Page: of:					1	0/16	4120	Date:		790	Tel: 206-352-3	N.	3600 Fremont Ave
	2	Project No (Internal):	Laboratory F						11 -			2	nalytica	A	
	ナイ	11/1/1/1/1/			-								non	ren	R
nole	Sam	Record - Whole Air	ndv I	Cust	ain of	lir Cha						•			

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Farallon Consulting

Jeff Kaspar 975 5th Ave NW Issaquah, WA 98027

RE: 457-007 Lab ID: 1609020

September 09, 2016

Attention Jeff Kaspar:

Fremont Analytical, Inc. received 4 sample(s) on 9/1/2016 for the analyses presented in the following report.

Volatile Organic Compounds-EPA Method TO-15 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mohl C. Redy

Mike Ridgeway Laboratory Director

CC: Russell Luiten

DoD/ELAP Certification #L2371, ISO/ICC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Lab Order:	Farallon Consulting 457-007 1609020	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1609020-001	IA1-083116-OFFICE	08/31/2016 12:00 AM	09/01/2016 2:23 PM
1609020-002	IA2-083116-WAREHOUSE	08/31/2016 12:00 AM	09/01/2016 2:23 PM
1609020-003	AA1-083116-DO	08/31/2016 12:00 AM	09/01/2016 2:23 PM
1609020-004	SYSTEM-083116	08/31/2016 12:00 AM	09/01/2016 2:23 PM

Case Narrative

WO#: **1609020** Date: **9/9/2016**

CLIENT:Farallon ConsultingProject:457-007

WorkOrder Narrative: I. SAMPLE RECEIPT: Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS: Air samples are reported in ppbv and ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Qualifiers & Acronyms

WO#: **1609020** Date Reported: **9/9/2016**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL - Reporting Limit RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Client:Farallon ConsultingWorkOrder:1609020Project:457-007Client Sample ID:141.082116 OFFICE

Client Sample ID:	IA1-083116-OFFI	CE		Date Sam	pled:	8/31/2	:016
Lab ID:	1609020-001A			Date Rece	ived:	9/1/20	16
Sample Type:	Summa Canister						
Analyte		Concentration	Reporting Limit	Qual	Meth	od	Date/Analyst

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357	EPA-TO-15SIM	09/08/2016	
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM	09/08/2016	
Tetrachloroethene (PCE)	0.0700	0.475	0.0500	0.339	EPA-TO-15SIM	09/08/2016	I
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	09/08/2016	I
Trichloroethene (TCE)	0.420	2.26	0.0170	0.0914	EPA-TO-15SIM	09/08/2016	I
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	09/08/2016	I
Surr: 4-Bromofluorobenzene	90.9 %Rec		70-130		EPA-TO-15SIM	09/08/2016	

 Client:
 Farallon Consulting

 WorkOrder:
 1609020

 Project:
 457-007

Analyte	Concentration	Reporting Limit	Qual	Method	Date/Analyst
Sample Type:	Summa Canister				
Lab ID:	1609020-002A		Date Re	ceived: 9/1/	2016
Client Sample ID:	IA2-083116-WAREHOUSE		Date Sa	mpled: 8/3 ²	1/2016

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357	EPA-TO-15SIM	09/08/2016	
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM	09/08/2016	
Tetrachloroethene (PCE)	0.0700	0.475	0.0500	0.339	EPA-TO-15SIM	09/08/2016	
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	09/08/2016	
Trichloroethene (TCE)	0.400	2.15	0.0170	0.0914	EPA-TO-15SIM	09/08/2016	
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	09/08/2016	
Surr: 4-Bromofluorobenzene	91.1 %Rec		70-130		EPA-TO-15SIM	09/08/2016	

Client: Farallon Consulting WorkOrder: 1609020 **Project:** 457-007 **Client Sample ID:** AA1-083116-DO Date Sampled: 8/31/2016 Lab ID: 1609020-003A Date Received: 9/1/2016 Sample Type: Summa Canister **Reporting Limit** Date/Analyst Analyte Concentration Qual Method Volatile Organic Compounds-EPA Method TO-15 (SIM)

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357	EPA-TO-15SIM	09/08/2016	BC
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM	09/08/2016	BC
Tetrachloroethene (PCE)	<0.0500	<0.339	0.0500	0.339	EPA-TO-15SIM	09/08/2016	BC
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	09/08/2016	BC
Trichloroethene (TCE)	<0.0170	<0.0914	0.0170	0.0914	EPA-TO-15SIM	09/08/2016	BC
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	09/08/2016	BC
Surr: 4-Bromofluorobenzene	93.4 %Rec		70-130		EPA-TO-15SIM	09/08/2016	BC

Client: Farallon Consulting WorkOrder: 1609020 **Project:** 457-007 **Client Sample ID:** SYSTEM-083116 Lab ID: 1609020-004A

Date Sampled: 8/31/2016 Date Received: 9/1/2016

Sample Type:	Summa Caniste	er							
Analyte		Concen	tration	Reportir	ng Limit	Qual	Method	Date/Analy	/st
Volatile Organic Co	ompounds-EPA Me	ethod TO-18	<u>5 (SIM)</u>						
		(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1-Dichloroethene (D	CE)	<0.00900	<0.0357	0.00900	0.0357		EPA-TO-15SIM	09/08/2016	BC
cis-1,2-Dichloroethene	9	6.03	23.9	0.0200	0.0793		EPA-TO-15SIM	09/08/2016	BC
Tetrachloroethene (PC	CE)	73.3	497	0.800	5.43		EPA-TO-15SIM	09/07/2016	BC
trans-1,2-Dichloroethe	ene	0.0700	0.278	0.00600	0.0238		EPA-TO-15SIM	09/08/2016	BC
Trichloroethene (TCE))	89.8	482	0.272	1.46		EPA-TO-15SIM	09/07/2016	BC
Vinyl chloride		<0.0850	<0.217	0.0850	0.217		EPA-TO-15SIM	09/08/2016	BC
Surr: 4-Bromofluoro	benzene	96.9 %Rec		70-130			EPA-TO-15SIM	09/08/2016	BC

Fremont
Analytical_

Work Order: 1609020								20	SUMMA	RY REF	OR
CLIENT: Farallon Co	onsulting				V						
Project: 457-007					V	olatile Org	ganic Co	ompounds		od 10-15) (SIN
Sample ID LCS-R31603	SampType: LCS			Units: ppbv		Prep Dat	e: 9/7/201	6	RunNo: 316	503	
Client ID: LCSW	Batch ID: R31603					Analysis Dat	e: 9/7/201	6	SeqNo: 596	3829	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride	2.65	0.0850	2.500	0	106	70	130				
1,1-Dichloroethene (DCE)	2.39	0.00900	2.500	0	95.6	70	130				
trans-1,2-Dichloroethene	1.96	0.00600	2.500	0	78.4	70	130				
cis-1,2-Dichloroethene	2.26	0.0200	2.500	0	90.4	70	130				
Trichloroethene (TCE)	2.39	0.0170	2.500	0	95.6	70	130				
Tetrachloroethene (PCE)	2.70	0.0500	2.500	0	108	70	130				
Surr: 4-Bromofluorobenzene	10.2		10.00		102	70	130				
Sample ID MB-R31603	SampType: MBLK			Units: ppbv		Prep Dat	e: 9/7/201	6	RunNo: 31(603	
Client ID: MBLKW	Batch ID: R31603					Analysis Dat	e: 9/7/201	6	SeqNo: 596	6830	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Vinyl chloride	ND	0.0850									
1,1-Dichloroethene (DCE)	ND	0.00900									
trans-1,2-Dichloroethene	ND	0.00600									
cis-1,2-Dichloroethene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0170									
Tetrachloroethene (PCE)	ND	0.0500									
Surr: 4-Bromofluorobenzene	9.54		10.00		95.4	70	130				
Sample ID 1609020-004AREP	SampType: REP			Units: ppbv		Prep Dat	e: 9/8/201	6	RunNo: 31(503	
Client ID: SYSTEM-083116	Batch ID: R31603					Analysis Dat	e: 9/8/201	6	SeqNo: 59(3828	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Vinyl chloride	ND	0.0850						0		30	
1,1-Dichloroethene (DCE)	ND	0.00900						0		30	
trans-1,2-Dichloroethene	0.0800	0.00600						0.07000	13.3	30	
cis-1,2-Dichloroethene	6.30	0.0200						6.030	4.38	30	
Trichloroethene (TCE)	233	0.0170						222.6	4.48	30	Е
Tetrachloroethene (PCE)	212	0.0500						195.1	8.46	30	Е

Work Order:	1609020								00.5	SUMMAR		ORT
CLIENT:	Farallon Co	nsulting										
Project:	457-007					Vo	platile Or	ganic Co	ompounds-	-EPA Meth	od IO-15	o (SIM)
Sample ID 16090	20-004AREP	SampType: RE)		Units: ppbv		Prep Da	te: 9/8/201	16	RunNo: 316	603	
Client ID: SYST	EM-083116	Batch ID: R31	603				Analysis Da	te: 9/8/20 1	16	SeqNo: 596	6828	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofle	uorobenzene	9.76		10.00		97.6	70	130		0		

Sample Log-In Check List

С	lient Name:	FARA	Work Order Numb	er: 1609020	
Lo	ogged by:	Clare Griggs	Date Received:	9/1/2016	2:23:00 PM
<u>Cha</u>	in of Cust	ody			
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present
2.	How was the	sample delivered?	Client		
Loa	In				
3	Coolers are p	present?	Yes 🗌	No 🗸	
0.	·		Air Samples		
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No 🗌	
5.	Custody Seal (Refer to com	ls present on shipping container/cooler? aments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹
6.	Was an atten	npt made to cool the samples?	Yes	No 🗌	NA 🔽
7.	Were all item	s received at a temperature of $>0^{\circ}$ C to 10.0° C *	Yes	No 🗌	NA 🗹
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🖌	No 🗌	
10.	Are samples	properly preserved?	Yes 🗹	No 🗌	
11.	Was preserva	ative added to bottles?	Yes	No 🔽	NA 🗌
12.	Is there head	space in the VOA vials?	Yes	No 🗌	NA 🔽
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes 🗹	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16.	Is it clear what	at analyses were requested?	Yes 🖌	No 🗌	
17.	Were all hold	ing times able to be met?	Yes 🗹	No 🗌	
Spe	cial Handli	ing (if applicable)			
18.	Was client no	bified of all discrepancies with this order?	Yes	No 🗌	NA 🔽
	Person	Notified: Date			
	By Who	m: Via:	eMail Pho	one 🗌 Fax	In Person
	Regardi	ng:			
	Client In	structions:			

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

	TAT -> STP Rush (specify)			Date/Time			X						and desired
		3	14:2		1	L	× ×			420	11me 116 1	Date	Inquished
		t I have	d above, tha	Client name	half of the	ical on be greement.	of this A	th Fremo backside	ront and	this Agree	to enter into ch of the tern	am authorized greement to ea	represent that I erified Client's a
	e Special Remarks:	will begin on the	ved after 4:00pm	or samples rece ay.	-around times fo ving business d	Turn-		N/A	× z	Seals Intact:			ondition:
		ssure Pressure Time Time	Container Pre Regulator	Pressure Date/Time	Pressure Dale					Dati Tim	Canister Flow Reg.		
1- 1/1 -H	• 1•	Ssure Pressure Time Time	Container Pra Pragulator	Pressure Date/Time	Pressure Date	ζ-	61			8/31/16	17 644 Conster Flow Reg.	33116	STEM-0
the th	1,1 Dee,	ssure Pressure Time Time	Container Pre	Pressure Date/Time	Pressure Date		62		A	8 (3)/16 Dat	13968	DO	A 1-083116-
all -H	LTS -1,2 DEE , TRAPS-1,2 DEE;	ssure Pressur Time Time	Container Pre	Pressure Date/Time	Pressure Date		65		AA	8/31 (14	FL8- 29	-WAREHose	A2-083/14
1	TO-15 STM PLE: TCE:	ssure Pressun Time Tim	Container Pro	Pressure Date/Time	- Pressure Date	Smith	61		AX	8/31/11 Dat	15424 FR8-31 FR8-31	OFFICE	A1-083116-
Internal Final Receipt Pressu Date ("Hg)	- Analysis Requested	nitial Field Final ple Sample sure Pressure (g) (" Hg)	Field ruipment Sam rtificaton Pres Code (" F	Internal Pressure at E Time of Pick- Co up (" Hg)	Evacuation Pressure (mtorr)	Container Type **	ed Sample Volume	× Anticipate Fill Time	& Gas Matri Code *	Sample Date &	Canister / Flow Reg Serial #	me	Sample N:
			Headspace Jar	der HJ = Glass	h Pressure Cylind	an HP = Hig	1 Liter MiniC	Vac MC =	1 Liter Bottle	ar Bag BV =	umma) TB = Ted	= Six Liter Canister (S	Container Codes: 6L
n Phito	farllor consulting. ce	Kuspele	LAF	Location: Reports To (PM Email (PM): nf Services)	FD (Consult Clie	uality L = LE	= Fuel Gas Q	Mapping 0	Fax:	SG = Soil Gas	S-02	123-5-5-5 (42-5) 2	Address:
	collected by:	2007	457.	Project Name: Project No:				2r	Sulti	62	rollon	i ti	Client:
°	Project No (Internal):	Laboratory									Tel: 206-352-3790		3600 Fremont Ave N. Seattle, WA 98103

1 of 2

Batch ID: Comment:	126 R31462	Start Date:	8/30/2016 9:34:	55 PM	
Cleaning Batcl	h Members:				
Canister ID	Lot# / Seria	al# Canister	Type Vol	me (Liters)	
12670	12670	Summa v	v/FR 6		
13968	13968	Summa v	v/FR 6		
15424	15424	Summa v	v/FR 6		
15902	15902	Summa v	v/FR 6		
17240	17240	Summa v	v/FR 6		
17644	17644	Summa v	v/FR 6		

Canister ID:139Cxpiration Date:	968		Test Code: Method No:	A-CNCL-SIM EPA-TO-15		SeqNo: 59383 Analysis Date: 8/30/2	2 016 4:03:5	8 PM
Analyte	Unit	Result	Analyte	Unit	Result	Analyte	Unit	Result
4-Bromofluorobenzene	%REC	9.24	Chloromethane	ppbv	< 0.400	Vinyl chloride	ppbv	< 0.085
Chloroethane	ppbv	< 0.098	1,1-Dichloroethene	ppbv	< 0.009	Methylene chloride	ppbv	< 0.060
rans-1,2-Dichloroethene	ppbv	< 0.006	tert-Butyl Methyl Eth	her ppbv	< 0.009	n-Hexane	ppbv	< 0.070
I,1-Dichloroethane	ppbv	< 0.008	cis-1,2-Dichloroethe	ene ppbv	< 0.020	Chloroform	ppbv	< 0.020
,1,1-Trichloroethane	ppbv	< 0.005	Carbon tetrachlorid	e ppbv	< 0.020	1,2-Dichloroethane	ppbv	< 0.020
Benzene	ppbv	< 0.040	Trichloroethene	ppbv	< 0.017	Toluene	ppbv	< 0.050
1,1,2-Trichloroethane	ppbv	< 0.020	Tetrachloroethene	ppbv	< 0.050	1,2-Dibromoethane	ppbv	< 0.020
Chlorobenzene	ppbv	< 0.070	Ethylbenzene	ppbv	< 0.050	m,p-Xylene	ppbv	< 0.060
-Xylene	ppbv	< 0.040	1,1,2,2-Tetrachloro	ethane ppbv	< 0.006	1,2,4-Trimethylbenzene	ppbv	< 0.073
,2,4-Trichlorobenzene	ppbv	< 0.050	Hexachlorobutadier	ne ppbv	< 0.017	Naphthalene	ppbv	< 0.300

Batch ID: Comment:	126 R31462	Start Date:	8/30/2016 9::	34:55 PM	
Cleaning Batch	n Members:				
Canister ID	Lot# / Serial#	Canister	Type V	olume (Liters)	
12670	12670	Summa v	v/FR 6		
13968	13968	Summa v	v/FR 6		
15424	15424	Summa v	v/FR 6		
15902	15902	Summa v	v/FR 6		
17240	17240	Summa v	v/FR 6		
17644	17644	Summa v	v/FR 6		

Canister ID:154Expiration Date:	24		Test Code: Method No:	A-CNCL-SIM EPA-TO-15		SeqNo: 59383 Analysis Date: 8/30/2	3 016 4:44:5	3 PM
Analyte	Unit	Result	Analyte	Unit	Result	Analyte	Unit	Result
4-Bromofluorobenzene	%REC	9.14	Chloromethane	ppbv	< 0.400	Vinyl chloride	ppbv	< 0.085
Chloroethane	ppbv	< 0.098	1,1-Dichloroethene	ppbv	< 0.009	Methylene chloride	ppbv	< 0.060
rans-1,2-Dichloroethene	ppbv	< 0.006	tert-Butyl Methyl Eth	ner ppbv	< 0.009	n-Hexane	ppbv	< 0.070
I,1-Dichloroethane	ppbv	< 0.008	cis-1,2-Dichloroethe	ene ppbv	< 0.020	Chloroform	ppbv	< 0.020
,1,1-Trichloroethane	ppbv	< 0.005	Carbon tetrachloride	e ppbv	< 0.020	1,2-Dichloroethane	ppbv	< 0.020
Benzene	ppbv	< 0.040	Trichloroethene	ppbv	< 0.017	Toluene	ppbv	< 0.050
,1,2-Trichloroethane	ppbv	< 0.020	Tetrachloroethene	ppbv	< 0.050	1,2-Dibromoethane	ppbv	< 0.020
Chlorobenzene	ppbv	< 0.070	Ethylbenzene	ppbv	< 0.050	m,p-Xylene	ppbv	< 0.060
-Xylene	ppbv	< 0.040	1,1,2,2-Tetrachloroe	ethane ppbv	< 0.006	1,2,4-Trimethylbenzene	ppbv	< 0.073
,2,4-Trichlorobenzene	ppbv	< 0.050	Hexachlorobutadien	ne ppbv	< 0.017	Naphthalene	ppbv	< 0.300

Batch ID: Comment:	126 R31462	Start Date:	8/30/2016 9::	34:55 PM	
Cleaning Batch	n Members:				
Canister ID	Lot# / Serial#	Canister	Type V	olume (Liters)	
12670	12670	Summa v	v/FR 6		
13968	13968	Summa v	v/FR 6		
15424	15424	Summa v	v/FR 6		
15902	15902	Summa v	v/FR 6		
17240	17240	Summa v	v/FR 6		
17644	17644	Summa v	v/FR 6		

Canister ID:159System Date:159	002		Test Code: Method No:	A-CNCL-SIM EPA-TO-15		SeqNo: 593834 Analysis Date: 8/30/2	4 016 5:26:0	7 PM
Analyte	Unit	Result	Analyte	Unit	Result	Analyte	Unit	Result
4-Bromofluorobenzene	%REC	9.15	Chloromethane	ppbv	< 0.400	Vinyl chloride	ppbv	< 0.085
Chloroethane	ppbv	< 0.098	1,1-Dichloroethene	ppbv	< 0.009	Methylene chloride	ppbv	< 0.060
rans-1,2-Dichloroethene	ppbv	< 0.006	tert-Butyl Methyl Eth	her ppbv	< 0.009	n-Hexane	ppbv	< 0.070
I,1-Dichloroethane	ppbv	< 0.008	cis-1,2-Dichloroethe	ene ppbv	< 0.020	Chloroform	ppbv	< 0.020
,1,1-Trichloroethane	ppbv	< 0.005	Carbon tetrachlorid	e ppbv	< 0.020	1,2-Dichloroethane	ppbv	< 0.020
Benzene	ppbv	< 0.040	Trichloroethene	ppbv	< 0.017	Toluene	ppbv	< 0.050
,1,2-Trichloroethane	ppbv	< 0.020	Tetrachloroethene	ppbv	< 0.050	1,2-Dibromoethane	ppbv	< 0.020
Chlorobenzene	ppbv	< 0.070	Ethylbenzene	ppbv	< 0.050	m,p-Xylene	ppbv	< 0.060
-Xylene	ppbv	< 0.040	1,1,2,2-Tetrachloro	ethane ppbv	< 0.006	1,2,4-Trimethylbenzene	ppbv	< 0.073
,2,4-Trichlorobenzene	ppbv	< 0.050	Hexachlorobutadier	ne ppbv	< 0.017	Naphthalene	ppbv	< 0.300

Batch ID: Comment:	126 R31462	Start Date: 8/30/20	16 9:34:55 PM	
Cleaning Bate	<u>ch Members:</u>			
Canister ID	Lot# / Serial#	Canister Type	Volume (Liters)	
12670	12670	Summa w/FR	6	
13968	13968	Summa w/FR	6	
15424	15424	Summa w/FR	6	
15902	15902	Summa w/FR	6	
17240	17240	Summa w/FR	6	
17644	17644	Summa w/FR	6	

Canister ID: 176	544		Test Code:	A-CNCL-SIM		SeqNo: 59	3836	
Expiration Date:			Method No:	EPA-TO-15		Analysis Date: 8/2	30/2016 6:07:2	0 PM
Analyte	Unit	Result	Analyte	Unit	Result	Analyte	Unit	Result
4-Bromofluorobenzene	%REC	9.12	Chloromethane	ppbv	< 0.400	Vinyl chloride	ppbv	< 0.085
Chloroethane	ppbv	< 0.098	1,1-Dichloroethene	ppbv	< 0.009	Methylene chloride	ppbv	< 0.060
trans-1,2-Dichloroethene	ppbv	< 0.006	tert-Butyl Methyl Eth	ner ppbv	< 0.009	n-Hexane	ppbv	< 0.070
1,1-Dichloroethane	ppbv	< 0.008	cis-1,2-Dichloroethe	ene ppbv	< 0.020	Chloroform	ppbv	< 0.020
1,1,1-Trichloroethane	ppbv	< 0.005	Carbon tetrachloride	e ppbv	< 0.020	1,2-Dichloroethane	ppbv	< 0.020
Benzene	ppbv	< 0.040	Trichloroethene	ppbv	< 0.017	Toluene	ppbv	< 0.050
1,1,2-Trichloroethane	ppbv	< 0.020	Tetrachloroethene	ppbv	< 0.050	1,2-Dibromoethane	ppbv	< 0.020
Chlorobenzene	ppbv	< 0.070	Ethylbenzene	ppbv	< 0.050	m,p-Xylene	ppbv	< 0.060
o-Xylene	ppbv	< 0.040	1,1,2,2-Tetrachloroe	ethane ppbv	< 0.006	1,2,4-Trimethylbenz	ene ppbv	< 0.073
1,2,4-Trichlorobenzene	ppbv	< 0.050	Hexachlorobutadien	ie ppbv	< 0.017	Naphthalene	ppbv	< 0.300

Sincerely,

Chelsea Ward Project Manager

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Farallon Consulting Jeff Kaspar 975 5th Ave NW Issaquah, WA 98027

RE: 457-007 Work Order Number: 1701058

January 13, 2017

Attention Jeff Kaspar:

Fremont Analytical, Inc. received 5 sample(s) on 1/9/2017 for the analyses presented in the following report.

Volatile Organic Compounds-EPA Method TO-15 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Unl c. Redy

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L2371, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Farallon Consulting 457-007 1701058	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1701058-001	PFS-Influent-010517	01/05/2017 9:40 AM	01/09/2017 2:36 PM
1701058-002	OLY-Influent-010517	01/05/2017 11:10 AM	01/09/2017 2:36 PM
1701058-003	IA2-010517-Warehouse	01/05/2017 3:40 PM	01/09/2017 2:36 PM
1701058-004	IA2-010717-Office	01/05/2017 4:45 PM	01/09/2017 2:36 PM
1701058-005	OA1-010517-UW	01/05/2017 4:55 PM	01/09/2017 2:36 PM

Case Narrative

WO#: **1701058** Date: **1/13/2017**

CLIENT:Farallon ConsultingProject:457-007

WorkOrder Narrative: I. SAMPLE RECEIPT: Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS: Air samples are reported in ppbv and ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Qualifiers & Acronyms

WO#: **1701058** Date Reported: **1/13/2017**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV** - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Client: Farallon Consulting WorkOrder: 1701058 **Project:** 457-007 **Client Sample ID:** Date Sampled: 1/5/2017 PFS-Influent-010517 1701058-001A Date Received: 1/9/2017 Lab ID: Sample Type: Summa Canister Analyte Concentration **Reporting Limit** Qual Method Date/Analyst

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357	EPA-TO-15SIM	01/11/2017	
cis-1,2-Dichloroethene	1.50	5.95	0.0200	0.0793	EPA-TO-15SIM	01/11/2017	
Tetrachloroethene (PCE)	22.5	153	0.800	5.43	EPA-TO-15SIM	01/11/2017	
trans-1,2-Dichloroethene	0.0532	0.211	0.00600	0.0238	EPA-TO-15SIM	01/11/2017	
Trichloroethene (TCE)	49.5	266	0.272	1.46	EPA-TO-15SIM	01/11/2017	
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	01/11/2017	
Surr: 4-Bromofluorobenzene	87.9 %Rec		70-130		EPA-TO-15SIM	01/11/2017	

Client: Farallon Consulting WorkOrder: 1701058 **Project:** 457-007 **Client Sample ID:** OLY-Influent-010517 Date Sampled: 1/5/2017 1701058-002A Lab ID: Date Received: 1/9/2017 Sample Type: Summa Canister Analyte Concentration **Reporting Limit** Qual Method Date/Analyst Volatile Organic Compounds-EPA Method TO-15 (SIM) (ug/m³) (ppbv) (ug/m³) (ppbv) ... -----. ---45014

1,1-Dichloroethene (DCE)	0.0247	0.0979	0.00900	0.0357	EPA-TO-15SIM	01/11/2017	BC
cis-1,2-Dichloroethene	0.558	2.21	0.0200	0.0793	EPA-TO-15SIM	01/11/2017	BC
Tetrachloroethene (PCE)	0.220	1.49	0.0500	0.339	EPA-TO-15SIM	01/11/2017	BC
trans-1,2-Dichloroethene	0.129	0.511	0.00600	0.0238	EPA-TO-15SIM	01/11/2017	BC
Trichloroethene (TCE)	1.76	9.47	0.0170	0.0914	EPA-TO-15SIM	01/11/2017	BC
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	01/11/2017	BC
Surr: 4-Bromofluorobenzene	88.7 %Rec		70-130		EPA-TO-15SIM	01/11/2017	BC

Client:Farallon ConsultingWorkOrder:1701058Project:457-007

Analyte	Conce	entration	Reporting Limit	Qual	Method	Date/Analyst	
Sample Type:	Summa Canister						
Lab ID:	1701058-003A			Date Re	ceived: 1/9/	2017	
Client Sample ID:	IA2-010517-Warehouse			Date Sa	mpled: 1/5/2	2017	

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357	EPA-TO-15SIM	01/11/2017	B
cis-1,2-Dichloroethene	0.0506	0.201	0.0200	0.0793	EPA-TO-15SIM	01/11/2017	BC
Tetrachloroethene (PCE)	0.133	0.905	0.0500	0.339	EPA-TO-15SIM	01/11/2017	BC
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	01/11/2017	BC
Trichloroethene (TCE)	0.549	2.95	0.0170	0.0914	EPA-TO-15SIM	01/11/2017	BC
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	01/11/2017	BC
Surr: 4-Bromofluorobenzene	91.2 %Rec		70-130		EPA-TO-15SIM	01/11/2017	BC

trans-1,2-Dichloroethene

Trichloroethene (TCE)

Vinyl chloride

Client: Farallon Consulting WorkOrder: 1701058 **Project:** 457-007 **Client Sample ID:** IA2-010717-Office Date Sampled: 1/5/2017 Lab ID: 1701058-004A Date Received: 1/9/2017 Sample Type: Summa Canister Analyst An Vo 1,1 /2017 вС cis /2017 BC BC Tetrachloroethene (PCE) 1/2017

0.00600

0.272

0.0238

1.46

nalyte	Concen	tration	Reporting Limit		Qual	Method	Date/
latile Organic Compounds-EPA	Method TO-15	<u>5 (SIM)</u>					
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357		EPA-TO-15SIM	01/11
-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793		EPA-TO-15SIM	01/11
trachloroethene (PCE)	0.0863	0.585	0.0500	0.339		EPA-TO-15SIM	01/11

<0.0238

39.5

nyl chloride	<0.0850	<0.217	0.0850	0.217
Surr: 4-Bromofluorobenzene	91.4 %Rec		70-130	

< 0.00600

7.35

EPA-TO-15SIM 01/11/2017

EPA-TO-15SIM 01/11/2017

EPA-TO-15SIM 01/11/2017

01/11/2017

EPA-TO-15SIM

вС

BC

BC

ВC

Client: Farallon Consulting WorkOrder: 1701058 457-007 **Project: Client Sample ID:** OA1-010517-UW Date Sampled: 1/5/2017 1701058-005A Date Received: 1/9/2017 Lab ID: Sample Type: Summa Canister Concentration **Reporting Limit** Analyte Qual Method Date/Analyst Volatile Organic Compounds-EPA Method TO-15 (SIM) (ppbv) (ug/m^3) (ppbv) (ug/m³) 1,1-Dichloroethene (DCE) <0.00900 <0.0357 0.00900 EPA-TO-15SIM 01/12/2017 вС 0.0357 cis-1,2-Dichloroethene <0.0200 EPA-TO-15SIM 01/12/2017 вС < 0.0793 0.0200 0.0793 EPA-TO-15SIM 01/12/2017 Tetrachloroethene (PCE) 0.0844 вС 0.573 0.0500 0.339 trans-1,2-Dichloroethene <0.00600 <0.0238 0.00600 EPA-TO-15SIM 01/12/2017 вС 0.0238 Trichloroethene (TCE) EPA-TO-15SIM BC 0.923 4.96 0.0170 0.0914 01/12/2017

0.0850

70-130

0.217

--

< 0.0850

93.2 %Rec

<0.217

Vinyl chloride

Surr: 4-Bromofluorobenzene

вС

вС

EPA-TO-15SIM 01/12/2017

EPA-TO-15SIM 01/12/2017
Fremont Analytical	
-----------------------	--

1701058

Farallon Consulting

Project: 457-007

Work Order:

CLIENT:

Volatile Organic Compounds-EPA Method TO-15 (SIM)

Sample ID LCS-R33852	SampType: LCS			Units: ppbv		Prep Dat	te: 1/11/20)17	RunNo: 33	852	
Client ID: LCSW	Batch ID: R33852					Analysis Dat	te: 1/11/20	17	SeqNo: 64	3166	ļ
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride	2.76	0.0850	2.500	0	110	70	130				
1,1-Dichloroethene (DCE)	2.95	0.00900	2.500	0	118	70	130				
trans-1,2-Dichloroethene	2.60	0.00600	2.500	0	104	70	130				
cis-1,2-Dichloroethene	2.27	0.0200	2.500	0	90.8	70	130				
Trichloroethene (TCE)	2.74	0.0170	2.500	0	109	70	130				
Tetrachloroethene (PCE)	2.61	0.0500	2.500	0	104	70	130				
Surr: 4-Bromofluorobenzene	7.99		10.00		79.9	70	130				
Sample ID MB-R33852	SampType: MBLK			Units: ppbv		Prep Da	.te: 1/11/20)17	RunNo: 33	852	
Client ID: MBLKW	Batch ID: R33852					Analysis Dat	te: 1/11/20	117	SeqNo: 64	3167	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride	ND	0.0850									
1,1-Dichloroethene (DCE)	ND	0.00900									
trans-1,2-Dichloroethene	ND	0.00600									
cis-1,2-Dichloroethene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0170									
Tetrachloroethene (PCE)	ND	0.0500									
Surr: 4-Bromofluorobenzene	7.77		10.00		77.7	70	130				
Sample ID 1701058-005AREP	SampType: REP			Units: ppbv		Prep Da ^r	te: 1/12/20)17	RunNo: 33	852	
Client ID: OA1-010517-UW	Batch ID: R33852					Analysis Da [,]	te: 1/12/20)17	SeqNo: 64	3165	

Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride	ND	0.0850						0		30	
1,1-Dichloroethene (DCE)	ND	0.00900						0		30	
trans-1,2-Dichloroethene	ND	0.00600						0		30	
cis-1,2-Dichloroethene	ND	0.0200						0		30	
Trichloroethene (TCE)	0.925	0.0170						0.9234	0.141	30	
Tetrachloroethene (PCE)	0.0754	0.0500						0.08440	11.3	30	

Work Order:	1701058									2.00	SUMMA		PORT
CLIENT:	Farallon Co	nsulting											
Project:	457-007						1	/olatile C	organic C	Compounds	S-EPA Met	hod TO-1	5 (SIM)
Sample ID 17010	58-005AREP	SampType	: REP			Units: ppbv		Prep Da	ite: 1/12/20)17	RunNo: 338	352	
Client ID: OA1-0	10517-UW	Batch ID:	R33852					Analysis Da	ate: 1/12/20)17	SeqNo: 643	3165	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromoflu	uorobenzene		9.43		10.00		94.3	70	130		0		

Sample Log-In Check List

С	lient Name: FARA	Work Order Numb	per: 1701058		
Lo	ogged by: Clare Griggs	Date Received:	1/9/2017	2:36:00 PM	
<u>Cha</u>	nin of Custody				
1.	Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present	
2.	How was the sample delivered?	Courier			
Loo	u In				
<u></u>	Coolers are present?	Yes	No 🗸		
0.		Air Samples			
4.	Shipping container/cooler in good condition?	Yes 🔽	No 🗌		
5.	Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹	
6.	Was an attempt made to cool the samples?	Yes	No 🗌	NA 🗹	
7.	Were all items received at a temperature of $>0^{\circ}C$ to $10.0^{\circ}C^{*}$	Yes	No 🗌	NA 🖌	
8.	Sample(s) in proper container(s)?	Yes 🖌	No 🗌		
9.	Sufficient sample volume for indicated test(s)?	Yes 🖌	No 🗌		
10.	Are samples properly preserved?	Yes 🖌	No 🗌		
11.	Was preservative added to bottles?	Yes	No 🖌	NA 🗌	
12.	Is there headspace in the VOA vials?	Yes	No 🗌	NA 🗹	
13.	Did all samples containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌		
14.	Does paperwork match bottle labels?	Yes 🖌	No 🗌		
15.	Are matrices correctly identified on Chain of Custody?	Yes 🖌	No 🗌		
16.	Is it clear what analyses were requested?	Yes 🖌	No 🗌		
17.	Were all holding times able to be met?	Yes 🖌	No 🗌		
<u>Spe</u>	ecial Handling (if applicable)				
18.	Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🖌	
	Person Notified: Da	ate			
	By Whom: Vi	a: 🗌 eMail 🗌 Ph	one 🗌 Fax	In Person	
	Regarding:				
	Client Instructions:				

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

	rAT> STD Rush (specify)							×					2	
		é		Ĭ	Date/Time	\	(Received				ate/Time	0	Relinquished
		212	M	11/	Date/Time	(7.	x S	8	153	2017	ate/Time	· dil	
		ave	e, that I h	med abov	Client na	ehalf of the	ical on bo greement	t Analyt f this Ag	1 Fremon ackside o	nent with ont and b	this Agreer s on the fro	each of the term	that I am authorizent's agreement to	I represent verified Cli
	special Remarks:	begin on the	4:00pm will b	eceived after	for samples re day.	-around times wing business	Turn folloy		VA	× z	Seals Intact:			Condition.
6	E	1655 Time	850 Time	Regulator	1/4/2017 Date/Time	12/30/16 9:30 Date					1655 Time	FR8-03 Flow Reg	L-010517-UW	Condition: UA
4 L		8 8	30 psi Pressure	Container	30 psi Pressure	10 mTorr Pressure	Suma	6L	8hr	A	<mark>1/5/2017</mark> වුකුල	17235 Canister		
		1540 Time	840 Time	Regulator	1/4/2017 Date/Time	12/30/16 9:30 Date					1645 Time	FR8-14 Flow Reg.	010517-Office	E IA1
n		5 Pressure	30 psi	Container	30 psi Pressure	10 mTorr Pressure	Suma	6L	8hr	A	1/5/2017 Date	12667 Canister		
	VC	1645 Time	845 Time	Regulator	1/4/2017 Date-Time	12/30/16 9:30 Date			1		1540 Time	FR8-29 Flow Reg.	051/-Warehouse	IA2-UI
a H	1, LOCE	6 Pressure	30 psi Pressure	Container	30 psi Pressure	10 mTorr Pressure	Suma	6L	8hr	AA	1/5/2017 Date	15423 Canister		
Val - 1	Trans -1,2- OCE	1110 Time	1109 Time	Regulator	1/4/2017 Date/Time	12/30/16 9:30 Date					1110 Tune	Grab Flow Reg.	ntluent-010517	, OLA
5	CIS-1, 2 - dichloroethap	6 Pressure	30 psi	Containar	30 psi Pressure	10 mTorr Pressure	Suma	6L	8hr	AA	1/5/2017 Date	17637 Canister		2
- 6	PCE, TCE,	941 Time	940 1 1018	Regulato	1/4/2017 Date/Time	12/30/16 9:30 Date					940 Time	Grab Flow Reg.	nfluent-010517	PFS-
10 12	TO-15 SIM	6	30 psi	Containa	30 psi	10 mTorr	Suma	6L	8hr	AA	1/5/2017 Date	17648 Canister		,
Date ("Hg)	Analysis Requested	Pressure (" Hg)	Pressure (" Hg)	Certificaton Code	Time of Pick- up (" Hg)	Pressure (mtorr)	Container Type **	Sample Volume	Anticipated Fill Time	Gas Matrix Code *	Sample Date & Time	Canister / Flow Reg Serial #	Sample Name	
Internal		Field Final	Field Initial	Equipment	Pressure at	Evacuation								
			e Jar	lass Headspace	inder HJ = G	igh Pressure Cyli	an HP = Hi	Liter Minic	Vac MC = 1	Liter Bottle	ar Bag BV = 1	er (Summa) TB = Ted	odes: 6L = Six Liter Canist	** Container C
	C		4		ient Services)	LEED (Consult Cl	uality L = I	= Fuel Gas Q	lapping Q	M = Plume N	SG = Soil Gas	ubslab L = Landfill	odes: I = Indoor SS = S	* Gas Matrix C
020	forallon consulting - C	xr 6	Kasi	0	Email (PM):					Fax:		75-0800	425-20	Telephone
	RI	has	en	(PM):	Reports To				L	1802	A	ah, w	Zip: 1555.9	City, State,
	C				Location:						NwJ	Sth Ave	975-	Address:
D,	Collected by: D. Agoilor	1	57-00	4	Project No:						Sulting	on Con	faralle	Client:
		_			Project Nan								>	
13 0	15/2017 Page: 1 of:	Date:										Tel: 206-352-3790 Fax: 206-352-7178	nt Ave N. 98103	3600 Fremo Seattle, WA
f 13	roject No (Internal):	Laboratory P										nalytical		
reement	aboratory Services Ag	rd & L	Recor	tody	of Cus	Chain (Air					nont	Fron	R

COC Air - 4.05.16

1 of 2

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Farallon Consulting Jeff Kaspar 975 5th Ave NW Issaquah, WA 98027

RE: Capital Work Order Number: 1703360

April 05, 2017

Attention Jeff Kaspar:

Fremont Analytical, Inc. received 4 sample(s) on 3/31/2017 for the analyses presented in the following report.

Volatile Organic Compounds-EPA Method TO-15 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Unl c. Kedy

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L2371, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Farallon Consulting Capital 1703360	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1703360-001	OA-1-033017	03/30/2017 3:37 PM	03/31/2017 12:49 PM
1703360-002	IA-2-033017	03/30/2017 4:40 PM	03/31/2017 12:49 PM
1703360-003	IA-1-033017	03/30/2017 4:30 PM	03/31/2017 12:49 PM
1703360-004	PFS-Influent-033017	03/30/2017 3:37 PM	03/31/2017 12:49 PM

Case Narrative

WO#: **1703360** Date: **4/5/2017**

CLIENT:Farallon ConsultingProject:Capital

WorkOrder Narrative: I. SAMPLE RECEIPT: Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS: Air samples are reported in ppbv and ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Qualifiers & Acronyms

WO#: **1703360** Date Reported: **4/5/2017**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV** - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL - Reporting Limit RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Client: Farallon Consulting WorkOrder: 1703360 **Project:** Capital **Client Sample ID:** OA-1-033017 Date Sampled: 3/30/2017 Date Received: 3/31/2017 Lab ID: 1703360-001A Sample Type: Summa Canister Analyte Concentration **Reporting Limit** Qual Method Date/Analyst Volatile Organic Compounds-EPA Method TO-15 (SIM) (ppbv) (ug/m³) (ppbv) (ug/m³) < 0.00900 <0.0357 1,1-Dichloroethene (DCE) 0.00900 0.0357 EPA-TO-15SIM 04/04/2017 BС

,				0.000.			-
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM	04/04/2017	BC
Tetrachloroethene (PCE)	<0.0500	<0.339	0.0500	0.339	EPA-TO-15SIM	04/04/2017	BC
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	04/04/2017	BC
Trichloroethene (TCE)	<0.0170	<0.0914	0.0170	0.0914	EPA-TO-15SIM	04/04/2017	BC
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	04/04/2017	BC
Surr: 4-Bromofluorobenzene	106 %Rec		70-130		EPA-TO-15SIM	04/04/2017	BC

Client: Farallon Consulting WorkOrder: 1703360 Project: Capital Client Sample ID: IA-2-033017 Date Sampled: 3/30/2017 1703360-002A Date Received: 3/31/2017 Lab ID: Sample Type: Summa Canister Analyte Concentration **Reporting Limit** Qual Method Date/Analyst

Volatile Organic Compounds-EPA Method TO-15 (SIM)

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)		
1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357	EPA-TO-15SIM 04/04/2017	' BC
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM 04/04/2017	' BC
Tetrachloroethene (PCE)	0.0518	0.351	0.0500	0.339	EPA-TO-15SIM 04/04/2017	' BC
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM 04/04/2017	' BC
Trichloroethene (TCE)	0.637	3.42	0.0170	0.0914	EPA-TO-15SIM 04/04/2017	' BC
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM 04/04/2017	' BC
Surr: 4-Bromofluorobenzene	106 %Rec		70-130		EPA-TO-15SIM 04/04/2017	' BC

Client: Farallon Consulting WorkOrder: 1703360 Project: Capital Client Sample ID: IA-1-033017 Date Sampled: 3/30/2017 1703360-003A Date Received: 3/31/2017 Lab ID: Sample Type: Summa Canister Analyte Concentration **Reporting Limit** Qual Method Date/Analyst Volatile Organic Compounds-EPA Method TO-15 (SIM)

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357	EPA-TO-15SIM	04/04/2017	BC
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793	EPA-TO-15SIM	04/04/2017	BC
Tetrachloroethene (PCE)	<0.0500	<0.339	0.0500	0.339	EPA-TO-15SIM	04/04/2017	BC
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238	EPA-TO-15SIM	04/04/2017	BC
Trichloroethene (TCE)	0.280	1.51	0.0170	0.0914	EPA-TO-15SIM	04/04/2017	BC
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM	04/04/2017	BC
Surr: 4-Bromofluorobenzene	112 %Rec		70-130		EPA-TO-15SIM	04/04/2017	BC

Client: Farallon Consulting WorkOrder: 1703360 **Project:** Capital **Client Sample ID:** Date Sampled: 3/30/2017 PFS-Influent-033017 1703360-004A Date Received: 3/31/2017 Lab ID: Sample Type: Summa Canister Analyte Concentration **Reporting Limit** Qual Method Date/Analyst

Volatile Organic Compounds-EPA Method TO-15 (SIM)

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)		
1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357	EPA-TO-15SIM 04	1/04/2017
cis-1,2-Dichloroethene	2.51	9.95	0.0200	0.0793	EPA-TO-15SIM 04	1/04/2017
Tetrachloroethene (PCE)	20.4	138	0.0800	0.543	EPA-TO-15SIM 04	1/04/2017
trans-1,2-Dichloroethene	0.0666	0.264	0.00600	0.0238	EPA-TO-15SIM 04	1/04/2017
Trichloroethene (TCE)	31.4	169	0.0272	0.146	EPA-TO-15SIM 04	1/04/2017
Vinyl chloride	<0.0850	<0.217	0.0850	0.217	EPA-TO-15SIM 04	1/04/2017
Surr: 4-Bromofluorobenzene	104 %Rec		70-130		EPA-TO-15SIM 04	1/04/2017

Fremont
Analytical

Work Order: CLIENT:	1703360 Farallon Cons	sulting								QC S	SUMMA	RY REF	POR
Project:	Capital						\	/olatile Oi	rganic (Compounds	S-EPA Met	nod TO-1	5 (SIN
Sample ID: LCS-R3	5340	SampType	: LCS			Units: ppbv		Prep Date	e: 4/4/201	17	RunNo: 353	40	
Client ID: LCSW		Batch ID:	R35340					Analysis Date	e: 4/4/201	17	SeqNo: 676	390	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride			1.80	0.0850	2.500	0	72.2	70	130				
1,1-Dichloroethene ((DCE)		2.35	0.00900	2.500	0	94.0	70	130				
trans-1,2-Dichloroeth	hene		2.35	0.00600	2.500	0	93.8	70	130				
cis-1,2-Dichloroethe	ne		2.51	0.0200	2.500	0	100	70	130				
Trichloroethene (TC	E)		2.39	0.0170	2.500	0	95.7	70	130				
Tetrachloroethene (F	PCE)		3.18	0.0500	2.500	0	127	70	130				
Surr: 4-Bromofluo	probenzene		11.4		10.00		114	70	130				
Sample ID: MB-R35	5340	SampType	: MBLK			Units: ppbv		Prep Date	e: 4/4/201	17	RunNo: 353	340	
Client ID: MBLKW	v	Batch ID:	R35340					Analysis Date	e: 4/4/201	17	SeqNo: 676	391	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride			ND	0.0850									
1,1-Dichloroethene ((DCE)		ND	0.00900									
trans-1,2-Dichloroeth	hene		ND	0.00600									
cis-1,2-Dichloroethe	ne		ND	0.0200									
Trichloroethene (TC	E)		ND	0.0170									
Tetrachloroethene (F	PCE)		ND	0.0500									
Surr: 4-Bromofluo	probenzene		10.2		10.00		102	70	130				
Sample ID: 1703360	0-004AREP	SampType	E REP			Units: ppbv		Prep Date	e: 4/5/201	17	RunNo: 353	340	
Client ID: PFS-Inf	luent-033017	Batch ID:	R35340					Analysis Date	e: 4/5/201	17	SeqNo: 676	389	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride			ND	0.0850						0		30	
1,1-Dichloroethene ((DCE)		ND	0.00900						0		30	
trans-1,2-Dichloroeth	hene	(0.0681	0.00600						0.06660	2.24	30	
cis-1,2-Dichloroethe	ne		2.30	0.0200						2.511	8.74	30	
Trichloroethene (TC	E)		46.4	0.0170						42.84	7.90	30	Е
Tetrachloroethene (F	PCE)		27.9	0.0500						27.79	0.303	30	Е

Work Order:	1703360									00.5	SUMMAR		PORT
CLIENT:	Farallon Cor	sulting					-						
Project:	Capital						V	olatile O	rganic C	Compounds	-EPA Meth	nod TO-1	5 (SIM)
Sample ID: 17033	60-004AREP	SampType	REP			Units: ppbv		Prep Da	te: 4/5/201	7	RunNo: 353	40	
Client ID: PFS-I	nfluent-033017	Batch ID:	R35340					Analysis Da	te: 4/5/201	7	SeqNo: 676	389	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofl	uorobenzene		8.07		10.00		80.7	70	130		0		

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample Log-In Check List

C	ient Name:	FARA	Work Order Num	ber: 1703360	
Lo	ogged by:	Erica Silva	Date Received:	3/31/2017	12:49:00 PM
Cha	in of Cust	ody			
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present
2.	How was the	sample delivered?	<u>Courier</u>		
Log	In				
3.	Coolers are p	present?	Yes	No 🖌	NA 🗌
5.			Air samples		
4.	Shipping con	tainer/cooler in good condition?	Yes 🖌	No 🗌	
5.	Custody Seal (Refer to com	ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹
6.	Was an atten	npt made to cool the samples?	Yes	No 🗌	NA 🗹
7.	Were all item	as received at a temperature of >0°C to 10.0°C*	Yes 🗌	No 🗌	NA 🗹
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🖌	No 🗌	
10.	Are samples	properly preserved?	Yes 🖌	No 🗌	
11.	Was preserva	ative added to bottles?	Yes	No 🔽	NA 🗌
12.	Is there head	Ispace in the VOA vials?	Yes	No 🗌	NA 🗹
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes 🖌	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16.	Is it clear what	at analyses were requested?	Yes 🖌	No 🗌	
17.	Were all hold	ling times able to be met?	Yes 🖌	No 🗌	
<u>Spe</u>	cial Handl	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No	NA 🗹
	Person	Notified: Date:			
	By Who	om: Via:	🗌 eMail 🗌 Ph	none 🗌 Fax [In Person
	Regardi	ing:			
	Client Ir	nstructions:			
19.	Additional rer	marks:			

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

auished Date/Time Date/Time Same Day (specify)	quished $Date/Time$ $Date/Time Received Date/Time Dat$	represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above and that I have verified Client's agreement to each for the terms on the front and backside of this Agreement.	Container Codes: BV = 1 Liter Bottle Vac CAN = Canister CYL = High Pressure Cylinder F = Filter S = Sorbent Tube TB = Tedlar Bag	Matrix Codes: AA = Ambient Air IA = Indoor Air L = Landfill S = Subslab / Soil Gas	Canister Date Flow Reg Time Pressure Pressure Date Time	FS-Influent 17648 3/30/11 CAN 6L Grab 10 mTorr Pressure Pressure Pressure -033011 How Reg. 1537 me CAN 6L Grab 314171 12:00 Pressure <	IA-1-033017 15895 3/36/17 IA CAN 6L 8hr District Pressure Preserve Pressure Pressure Pressure Pressure	A.a. σ_{33017} 12667 $3/36/17$ TCAN6L8hrTomotor σ_{assure} $CTS - 1/2 - DCE$ σ_{assure} <th>A-2-033017 12665 3/30/17 Connet Date AA CAN 6L 8hr Discont Pressure Pressu</th> <th>Sample Name Reg Serial # Time (Matrix)* Type ** Volume Fill Time Fill Time Fill Time Fill Time Pressure Pressure</th> <th>= Email(PM); JKgSpar Statellen canselting. Com</th> <th>ephone: UAS- 394-4414 Reports to (PM): Jon Kaspar</th> <th>, State, Zip: ISSAGuah, WA 98027 collected by: Daniel Aguilan</th> <th>ires: 975 Bth Ave NW Location: Sec. H/e, wA</th> <th>Int: Farallon Consulting Project No: 457-007</th> <th>$\frac{1}{2} \frac{1}{2} \frac{1}$</th> <th>TGHORL Seattle, WA 98103 Tel: 206-352-3790 Date: 3/20/17 Decent of Laboratory Project No (Internal): /703360</th> <th>Air Chain of Custody Record & Laboratory Services Agreem</th> <th>Internal Receipt Date Press Receipt Date Press Press</th> <th>special Remarks: Special Remarks: Analysis Requested Terrification of the second of</th> <th>And that I h Initial Field Find Field Fie</th> <th>age: 1 c I c I c I c I c I c I c I c I</th> <th>r P Cure robent Tube</th> <th>received x x x x x x x x x x x x x x x x x x x</th> <th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th> <th>Date: 3 Project Na Project No Location: Collected L Collected L Email (PM) Container Type ** CAN CAN CAN CAN CAN CAN CAN CAN</th> <th>0.327 0.352-3790 0.6-352-7178 Sample Type (Marris)* I</th> <th>Secretic Trel: 2 Time Time Time $\frac{1}{3}/30/17$ $\frac{1}{3}/30/17$ $\frac{1}{3}/30/17$ $\frac{1}{3}/30/17$ $\frac{1}{3}/30/17$ $\frac{1}{3}/30/17$ $\frac{1}{3}/30/17$ Time $\frac{1}{3}/30/17$ Time $\frac{1}{3}/30/17$ Time Time Time Time Time Time Time</th> <th>$\log \log$</th> <th>Farallon Consult Tarallon Consult TS B^{+} TS B</th> <th>ephone: c ephone: c ephon</th>	A-2-033017 12665 3/30/17 Connet Date AA CAN 6L 8hr Discont Pressure Pressu	Sample Name Reg Serial # Time (Matrix)* Type ** Volume Fill Time Fill Time Fill Time Fill Time Pressure Pressure	= Email(PM); JKgSpar Statellen canselting. Com	ephone: UAS- 394-4414 Reports to (PM): Jon Kaspar	, State, Zip: ISSAGuah, WA 98027 collected by: Daniel Aguilan	ires: 975 Bth Ave NW Location: Sec. H/e, wA	Int: Farallon Consulting Project No: 457-007	$\frac{1}{2} \frac{1}{2} \frac{1}$	TGHORL Seattle, WA 98103 Tel: 206-352-3790 Date: 3/20/17 Decent of Laboratory Project No (Internal): /703360	Air Chain of Custody Record & Laboratory Services Agreem	Internal Receipt Date Press Receipt Date Press Press	special Remarks: Special Remarks: Analysis Requested Terrification of the second of	And that I h Initial Field Find Field Fie	age: 1 c I c I c I c I c I c I c I c I	r P Cure robent Tube	received x x x x x x x x x x x x x x x x x x x	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Date: 3 Project Na Project No Location: Collected L Collected L Email (PM) Container Type ** CAN CAN CAN CAN CAN CAN CAN CAN	0.327 0.352-3790 0.6-352-7178 Sample Type (Marris)* I	Secretic Trel: 2 Time Time Time $\frac{1}{3}/30/17$ $\frac{1}{3}/30/17$ $\frac{1}{3}/30/17$ $\frac{1}{3}/30/17$ $\frac{1}{3}/30/17$ $\frac{1}{3}/30/17$ $\frac{1}{3}/30/17$ Time $\frac{1}{3}/30/17$ Time $\frac{1}{3}/30/17$ Time Time Time Time Time Time Time	$\log \log $	Farallon Consult Tarallon Consult TS B^{+} TS B	ephone: c ephone: c ephon
------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------	---------------------------------------------------	---------------------------------------------------------------	---------------------------------------------	----------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------	----------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------	-------------------------	------------------------------------------------	-------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------