Oakland | Folsom | Irvine

FINAL CAPITAL INDUSTRIES PLANT 4 INTERIM ACTION - STAGE 1 IN-SITU CHEMICAL OXIDATION REPORT

West of 4th Group Site Capital Industries, Inc. 5801 3rd Avenue South Seattle, Washington

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 457-008

For:

West of 4th Avenue Group Site Unit 2 Joint Deliverable Capital Industries, Inc. Blaser Die Casting Co. Stericycle Seattle, Washington

February 22, 2019

Prepared by:

Jennifer L. Moore Senior Scientist

Reviewed by:

Jeffrey Kaspar, L.G., L.H.G. Principal Geologist

TABLE OF CONTENTS

1.0	INTRODUCTION		1-1
	1.1	OBJECTIVES	1-1
	1.2	ORGANIZATION	1-2
2.0	BACKGROUND		2-1
	2.1	PREVIOUS INVESTIGATIONS AT CI PLANT 4	2-1
	2.2	CONSTITUENTS OF CONCERN FOR THE INTERIM ACTION	2-3
	2.3	PRELIMINARY CLEANUP LEVELS	2-3
3.0	STAGE I ISCO INJECTION AND MONITORING3-1		
	3.1	PERMITTING	3-1
	3.2	OBSERVATION WELL INSTALLATION AND BASELINE	
		GROUNDWATER SAMPLING	3-1
	3.3		
	3.4		_
	3.5		
	3.6	PERFORMANCE MONITORING	3-3
4.0	ST	STAGE I ISCO DISTRIBUTION AND MONITORING RESULTS4-1	
	4.1		
	4.2		
	4.3	ADDITIONAL CI PLANT 4 TCE RESULTS	4-2
5.0	CC	ONCLUSIONS	5-1
6.0	RE	FERENCES	6-1
		FIGURES	
Figure	1	Site Diagram	
Figure	2	Property Diagram	
Figure	3	CVOC Results in Soil - 2015	
Figure	4	Stage 1 Groundwater Performance Monitoring Results	
Figure	5A	Lateral Distribution of Potassium Permanganate – Stage 1 ISCO Injectio	ns
Figure	5B	Lateral and Vertical Distribution of Potassium Permanganate – Injection B3	Location
Figure	5C	Lateral and Vertical Distribution of Potassium Permanganate – Injection C5	Location

- Figure 5D Lateral and Vertical Distribution of Potassium Permanganate Injection Location D4
- Figure 5E Lateral and Vertical Distribution of Potassium Permanganate Injection Location E5
- Figure 5F Lateral and Vertical Distribution of Potassium Permanganate Injection Location F5
- Figure 6A Stage 1 Performance Monitoring Results for CVOCs in Soil -2018 Injection Location B3
- Figure 6B Stage 1 Performance Monitoring Results for CVOCs in Soil -2018 Injection Location C5
- Figure 6C Stage 1 Performance Monitoring Results for CVOCs in Soil -2018 Injection Location D4
- Figure 6D Stage 1 Performance Monitoring Results for CVOCs in Soil -2018 Injection Location E5
- Figure 6E Stage 1 Performance Monitoring Results for CVOCs in Soil -2018 Injection Location F5
- Figure 7 TCE Delineation in Northwestern Portion of Plant 4

TABLES

Table 1 Plant 4 - 2015 Soil Analytical Results for CVOCs Table 2 Groundwater Analytical Results for CVOCs Table 3 Groundwater Analytical Results for Metals Table 4 Process Monitoring at Monitoring and Observation Wells Table 5 Stage 1 Groundwater Performance Monitoring, Depth to Groundwater and MnO₄ Concentrations Table 6 Stage 1 Round 1 Performance Soil Analytical Results Table 7 Stage 1 Round 1 and Corresponding Round 2 Performance Soil Analytical Results Table 8 CVOC Soil Analytical Results, Northwestern Portion of Plant 4

APPENDICES

- Appendix A Washington State Department of Ecology Underground Injection Control Authorization Letter
- Appendix B Observation Well Diagrams and Boring Logs
- Appendix C Remediation Field Services Report
- Appendix D Laboratory Analytical Reports

ACRONYMS AND ABBREVIATIONS

bgs below ground surface

Cascade Technical Services

Cascade Report Remediation Field Services Report, Capital Industries, 5801 3rd

Avenue South, Seattle, WA 98108 dated September 11, 2018,

prepared by Cascade Technical Services

CI Capital Industries, Inc.

cis-1,2-DCE cis-1,2-dichloroethene

COCs constituents of concern

CVOCs chlorinated volatile organic compounds

Ecology Washington State Department of Ecology

EPA U.S. Environmental Protection Agency

Farallon Farallon Consulting, L.L.C.

ISCO in-situ chemical oxidation

ISCO Report Final Capital Industries Plant 4 Interim Action - Stage 1

In-Situ Chemical Oxidation Report dated February 22, 2019,

prepared by Farallon Consulting, L.L.C. (this document)

KMnO₄ potassium permanganate

PCE tetrachloroethene

PCULs preliminary cleanup levels

PNOD permanganate natural oxidant demand

psi pounds per square inch

RI Remedial Investigation

Site the West of 4th Group Site consisting of Site Unit 1 and Site

Unit 2

Stage 1 FIWP Final Revised Capital Industries Plant 4 Stage 1 Field

Implementation Work Plan, Site Unit 2, Seattle, Washington dated July 26, 2018, prepared by Farallon Consulting, L.L.C.

SU2 Site Unit 2

SU2 FS Report West of Fourth Site Unit 2 Feasibility Study, Seattle, Washington

dated August 11, 2016, prepared by the West of Fourth Group

and Pacific Groundwater Group

TCE trichloroethene

West of 4th Group Art Brass Plating, Inc.; Blaser Die Casting Co.; Capital

Industries, Inc.; and Burlington Environmental, LLC

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this *Final Capital Industries Plant 4 Interim Action - Stage 1 In Situ Chemical Oxidation* [ISCO] *Report* (ISCO Report) on behalf of Art Brass Plating, Inc.; Blaser Die Casting Co.; Capital Industries, Inc. (CI); and Burlington Environmental, LLC¹ (collectively referred to herein as the West of 4th Group), which are the potentially liable parties for the West of 4th Group Site (herein referred to as the Site), which consists of Site Unit 1 and Site Unit 2 (SU2), depicted on Figure 1. The Art Brass Plating, Inc. property is located at Site Unit 1. The CI and Blaser Die Casting Co. properties are located at SU2. The CI property comprises five buildings identified as Plants 1 through 5 (Figure 2). The work summarized in this ISCO Report was part of an interim action pilot study at CI Plant 4 in SU2 as discussed in the *Final Capital Industries Plant 4 Interim Action Work Plan, West of 4th Group Site, Capital Industries, Inc., 5815 4th Avenue South, Washington dated December 21, 2017, prepared by Farallon (2017) and is consistent with the evaluation of prospective remediation technologies presented in the <i>West of 4th Site Unit 2 Feasibility Study, Seattle, Washington* dated August 11, 2016, prepared by West of Fourth Group and Pacific Groundwater Group (2016) (SU2 FS Report).

This ISCO Report has been prepared in accordance with the requirements of Agreed Order No. DE 10402 entered into by the West of 4th Group and the Washington State Department of Ecology (Ecology) in April 2014; the First Amendment to Agreed Order No. DE 10402 dated November 20, 2017; and the Washington State Model Toxics Control Act Cleanup Regulation, as established in Chapter 173-340 of the Washington Administrative Code.

1.1 OBJECTIVES

The purpose of the ISCO Report is to provide a summary of the field procedures and, process and performance monitoring results for the Stage 1 ISCO injections conducted as a pilot test for an interim action at CI Plant 4. The Stage 1 ISCO injections and associated process and performance monitoring were conducted in accordance with the *Final Revised Capital Industries Plant 4 Stage 1 Field Implementation Work Plan* dated July 26, 2018, prepared by Farallon (Stage 1 FIWP). The ISCO technology that was used included direct injection of potassium permanganate (KMnO4) into the subsurface to treat shallow soil and groundwater within the Water Table Interval (i.e., at depths of from 0 to 20 feet below ground surface [bgs]). The interim action objectives are tied to the remedial action objectives for the Site, described in the SU2 FS Report, and include:

• Reducing concentrations of chlorinated volatile organic compounds (CVOCs) in soil beneath CI Plant 4 to concentrations less than the preliminary cleanup levels (PCULs) for the Site to reduce inhalation risks to acceptable levels (Table 1; Figure 3) and eliminate the potential for future risk to groundwater; and

¹ Burlington Environmental, LLC, is a wholly owned subsidiary of PSC Environmental Services, LLC, which is a wholly owned subsidiary of Stericycle Environmental Solutions, Inc.

• Reducing concentrations of CVOCs in Water Table Interval groundwater that allegedly originated from CI Plant 4 to concentrations less than the PCULs for the Site.

1.2 ORGANIZATION

This ISCO Report summarizes pertinent background information and provides procedures and results associated with the Stage 1 ISCO injections conducted at CI Plant 4 in SU2. This ISCO Report is organized into the following sections:

- **Section 1, Introduction,** presents an overview of the Site, and the objectives and organization of the ISCO Report.
- Section 2, Background, presents background information, including a summary of previous investigations conducted at CI Plant 4, and a description of the constituents of concern (COCs) and affected media that were targeted during the interim action.
- Section 3, ISCO Injections and Monitoring, describes the ISCO injection work elements and associated process and performance monitoring.
- Section 4, ISCO Distribution and Monitoring Results, provides a summary of the subsurface distribution achieved during the injection of the KMnO₄ solution, process and performance monitoring results, and additional assessment conducted in the northwestern portion of CI Plant 4.
- Section 5, Conclusions and Recommendations, summarizes Farallon's findings and conclusions regarding the Stage 1 ISCO injections and recommendations regarding use of ISCO for future work.
- Section 6, References, lists the documents cited in this ISCO Report.

2.0 BACKGROUND

This section presents background information, including a summary of previous investigations conducted at CI Plant 4, and a description of COCs and affected media that were targeted during the interim action.

2.1 PREVIOUS INVESTIGATIONS AT CI PLANT 4

Former operations at the CI property allegedly have resulted in releases of tetrachloroethene (PCE) and/or trichloroethene (TCE) to soil and groundwater. Details of historical CI operations and the results from prior environmental investigations, including a Remedial Investigation (RI) conducted by Farallon, are presented in the *Revised Draft Remedial Investigation Report, Capital Industries, Inc., 5801 3rd Avenue South, Seattle, Washington, Agreed Order No. DE 5348 dated October 2012, prepared by Farallon (2012). A hot solvent degreaser historically was present in the south-central portion of CI Plant 4/Plant 4 canopy (Figure 3). The hot solvent degreaser was used in CI Plant 4 from approximately 1987 to 1992 and was removed in 1993. Prior to 1987, manual degreasing was conducted at CI Plant 4. CI reportedly stored TCE at the CI Plant 4 canopy area and the solvent was manually applied to the metal surfaces prior to painting at the CI Plant 4 paint booths. Two drum storage areas were present in the west-central portion of the CI Plant 4 canopy (Figure 3). The southernmost drum storage area was constructed in 1978, was in use until 1985, and currently is used as the paint storage area. The northernmost drum storage area was constructed in 1978 and currently is still in use.*

During subsurface investigations conducted by Farallon (2012) at CI Plant 4 during the RI, neither TCE nor PCE was detected in soil samples collected from the boring/monitoring well locations at concentrations that accounted for the impacts to groundwater quality that occurred at and down-gradient of CI Plant 4. Concentrations of CVOCs detected in groundwater samples collected from the Water Table Interval (i.e., at depths of from 0 to 20 feet bgs) and/or the Shallow Interval (i.e., at depths from 20 to 40 feet bgs) near the suspected source areas previously identified at the CI property suggest there may be areas where concentrations of CVOCs in soil are greater than those detected during the RI. Therefore, Ecology required that additional investigation be conducted at CI Plant 4.

Farallon (2016) conducted passive soil gas and bulk soil sampling at CI Plant 4 and in the South Fidalgo Street right-of-way to assess the lateral and vertical distribution of PCE and TCE in soil beneath CI Plant 4 to resolve data gaps associated with the RI for the CI property, described in the revised data gap memorandum for Site Unit 2 (Farallon 2015).

The soil gas survey results indicated that the highest concentrations of PCE in soil gas were present in an area extending from the east-central portion to the south-southwestern portion of CI Plant 4. The areas with the highest concentrations of TCE in soil gas correlated with the areas with the highest concentrations of PCE in soil gas. Elevated concentrations of TCE were also detected in the approximate location of the northernmost/current drum storage area (Figure 3).

The highest concentration of cis-1,2-dichloroethene (cis-1,2-DCE) in soil gas was detected at the east-central portion of CI Plant 4, and correlates with the locations of the highest concentrations of PCE and TCE. The PCE, TCE, and cis-1,2-DCE data indicate potential releases at northernmost/current drum storage area at the west-central portion of the CI Plant 4 canopy, at the former degreaser location at the south-central portion of CI Plant 4, and at the east-central portion of CI Plant 4. Soil sampling at these locations was conducted to supplement existing soil data from the RI and further evaluate the nature and extent of COCs in soil (Table 1; Figure 3). Concentrations of PCE, TCE, and cis-1,2-DCE detected in soil gas at the east-central portion of CI Plant 4 could be the result of a release on the east-adjacent Pacific Food Systems property or encroachment of contamination from other areas beneath CI Plant 4. The specific source of CVOCs in soil gas on the Pacific Food Systems property is undetermined.

PCE was detected at concentrations exceeding the PCUL for air quality protection and/or the revised PCUL² for surface water quality protection in soil samples collected from borings P4-B6, P4-B7, P4-B8, and P4-B11. The maximum PCE concentration detected was 0.64 milligram per kilogram at boring P4-B6 in the southeastern portion of CI Plant 4, east of the former degreaser.

TCE was detected at concentrations exceeding the PCUL for air quality protection and/or the revised PCUL for surface water quality protection in soil samples collected from borings P4-B1, P4-B3 through P4-B9, and P4-B14. The maximum TCE concentration detected was 0.48 milligram per kilogram at boring P4-B7 in the central portion of CI Plant 4.

Cis-1,2-DCE, trans-1,2-dichloroethene, and vinyl chloride were not detected at concentrations exceeding PCULs in the soil samples collected at and proximate to CI Plant 4.

The soil analytical results indicated that the highest concentrations of CVOCs are present immediately beneath the CI Plant 4 building slab, and attenuated with depth. PCE and TCE were detected at low concentrations at CI Plant 4, which confirmed that there was not a significant or extensive release of PCE or TCE at CI Plant 4. The groundwater data from the RI Report (Farallon 2012) and post-RI sampling also supported the conclusions drawn from the soil data. The concentrations of COCs in the Water Table Interval are not indicative of a major release of PCE or TCE (Table 2; Figure 4). Neither PCE nor TCE was detected in either the Shallow or Intermediate Interval (i.e., at depths greater than 40 feet bgs), indicating that the release(s) of PCE and TCE that did occur were of insufficient mass and/or volume to affect deeper groundwater.

Sufficient data were collected at CI Plant 4 to evaluate potential cleanup technologies for soil and groundwater, described in the SU2 FS Report. The potential active cleanup technologies evaluated and the media to be remediated were:

• ISCO (soil and groundwater);

² Certain PCULs were revised in January 2017 to accommodate U.S. Environmental Protection Agency (EPA) revisions to surface water quality criteria.

- Soil excavation and off-Site disposal (soil);
- Soil vapor extraction/air sparging (soil and groundwater);
- Enhanced anaerobic biodegradation (groundwater); and
- In-situ chemical reduction (groundwater).

ISCO was the preferred cleanup technology for soil and groundwater due to its ability to be implemented with minimal interference with operations at CI Plant 4, and its ability to rapidly treat the low levels of CVOCs present in soil and groundwater (West of Fourth Group and Pacific Groundwater Group 2016).

2.2 CONSTITUENTS OF CONCERN FOR THE INTERIM ACTION

The COCs for soil are PCE and TCE. These COCs are a current and future risk to the soil-to-groundwater and soil-to-indoor-air pathways. The COCs for groundwater in the Water Table Interval are PCE and TCE. These COCs are a current and future risk to the groundwater-to-surface water and groundwater-to-indoor air pathways. PCE and TCE also have the potential to affect the Shallow Interval where anaerobic conditions exist and reductive dechlorination to vinyl chloride can occur. Oxidation of PCE and TCE in the Water Table Interval reduces the risk of vinyl chloride generation.

2.3 PRELIMINARY CLEANUP LEVELS

The PCULs for the Site are based on potential exposure pathways, and were defined in the Technical Memorandum regarding Revised Preliminary Cleanup Standards, W4 Joint Deliverable, Seattle, Washington dated September 12, 2014, from Farallon (2014) to Mr. Ed Jones of Ecology. The PCULs were updated on January 17, 2017 to reflect updates to human health criteria in the Clean Water Act promulgated by EPA on November 15, 2016. These PCULs also were included in the SU2 FS Report. The PCULs pertinent to the evaluation of the Stage 1 ISCO work are included in Tables 1, 2, 3, 6, and 7 for the process and performance monitoring data.

3.0 STAGE I ISCO INJECTION AND MONITORING

This section describes the ISCO injection work elements and associated process and performance monitoring. The work was conducted in general accordance with the criteria presented in the Stage 1 FIWP.

3.1 PERMITTING

Farallon obtained an Underground Injection Control permit from Ecology prior to initiating the Stage 1 ISCO injections (Appendix A), which indicated that the ISCO injection locations met the non-endangerment standard in accordance with Section 100 of Chapter 173-218 of the Washington Administrative Code. Ecology issued a State Environmental Policy Act threshold determination of non-significance for the interim action in 2017.

3.2 OBSERVATION WELL INSTALLATION AND BASELINE GROUNDWATER SAMPLING

One-inch-diameter observation wells OBW-1 and OBW-3 through OBW-5 were installed on June 16, 2018. One-inch-diameter observation well OBW-2 was installed on June 20, 2018. The purpose of the observation well installation was to provide process and performance monitoring data during and following the ISCO injection. Observation well diagrams are provided in Appendix B. The five new observation wells and monitoring wells MW-6 and MW-7 were sampled during a baseline groundwater monitoring event conducted on July 2, 2018. Baseline groundwater samples were collected and analyzed for the following parameters in accordance with the Sampling and Analysis Plan that was included with the Stage 1 FIWP:

- CVOCs by EPA Method 8260D;
- Dissolved arsenic by EPA Method 200.8;
- Dissolved and total chromium, manganese, cadmium, and lead by EPA Method 200.8;
- Total and dissolved iron by EPA Method 6010D;
- Total and dissolved mercury by EPA Methods 7470A/245.1;
- Total dissolved solids by Standard Method SM2540C; and
- Hexavalent chromium by Standard Method SM3500-CR B (monitoring well MW-7 only).

The baseline groundwater monitoring results for CVOCs are summarized in Table 2, and the results for metals are summarized in Table 3.

3.3 SPILL PREVENTION

Cascade Technical Services (Cascade) was subcontracted to perform the ISCO injections. Cascade's injection truck with onboard mixing vats was placed within secondary containment

compatible with the KMnO₄ solution and capable of holding 100 percent of the volume of the mixing vats. A spill kit with items capable of neutralizing, containing, and absorbing a potential spill was present when the 3-percent KMnO₄ solution was being mixed and injected into the subsurface.

Sudden changes in injection rates and pressure and visual observations are the first signs of oxidant surfacing during pressurized ISCO injection. When surfacing occurred, injection was stopped immediately and the KMnO₄ solution was neutralized with the prepared solution in the spill kit. The neutralized liquid was recovered, containerized, and disposed of in accordance with applicable federal, state, and local laws.

3.4 PROCESS MONITORING

Cascade provided process monitoring for injection pressures, flow rates, and injection volumes during injection of the KMnO₄ solution. A summary of Cascade's observations and measurements is included in the *Remediation Field Services Report*, *Capital Industries*, *5801* 3rd Avenue South, Seattle, WA 98108 dated September 11, 2018, prepared by Cascade (2018) (Cascade Report) (Appendix C). A Farallon Field Scientist monitored water levels and air pressures at nearby monitoring wells before, periodically during, and after each injection. Farallon's process monitoring results are provided in Table 4.

3.5 ISCO INJECTION

The Stage 1 ISCO injections were conducted at five locations from August 18 through August 22, 2018. Cascade injected the KMnO₄ solution to depths of up to 9 feet bgs in the vadose zone at locations B3, C5, D4, E5, and F5 (Figure 4). Cascade also injected the KMnO₄ solution into the Water Table Interval at location E5. ISCO injections into the vadose zone were conducted using a 2-foot injection screen, and into the saturated zone using a 5-foot injection screen.

Cascade hand-cleared each injection location for utilities with a hand-auger. Each borehole was then backfilled with bentonite chips that were hydrated and compressed in preparation for injection using a top-down approach. Initial injections at locations F5, E5, and B3 were attempted in the interval from 1 to 3 foot bgs to treat shallow CVOC concentrations in vadose zone soil immediately beneath the building slab. However, the KMnO₄ solution surfaced from the borehole upon initiation of flow and/or initial pressurization for injection. Surfacing did not occur at injection locations C5 and D4 where KMnO₄ injection was initiated at the interval from 2 to 4 feet bgs.

ISCO injection into initial injection location F5 (Figure 4) was conducted at low pressures of 0 to 31 pounds per square inch (psi) to assess the ability of the formation to accept the KMnO₄ solution. Cascade and Farallon began testing higher injection pressures ranging from 40 to 95 psi during injection at location E5 to further assess the formation's ability to accept the KMnO₄ solution and to maximize the distribution radius. Surfacing occurred at a nearby bollard that penetrated the building slab approximately 10 feet northwest of the injection location, through nearby floor cracks approximately 3 feet from the injection location, and into the well monument for monitoring well

MW-6 while injecting at the 5- to 7-foot depth interval at injection location E5. The daylighted KMnO₄ was neutralized and recovered upon observation and the injection pressure was reduced to 17 psi.

Injection pressures of 39 to 78 psi were achieved at injection location B3 without surfacing. Injection pressures of 16 to 94 psi were achieved at injection location D4 without surfacing. Higher injection pressures ranging from 67 to 179 psi were tested and achieved at injection location C5 without surfacing.

The Farallon Field Scientist periodically checked the groundwater in nearby monitoring wells for a pink or purple coloration associated with the presence of KMnO₄, and monitored air pressure inside the well casings to check for pressure increases in the vadose zone associated with the ISCO injections (Tables 4 and 5).

The boreholes for each injection location were abandoned with bentonite chips and hydrated to form a seal to within 6 inches of the ground surface. Each borehole was sealed with 6 inches of concrete to match the building slab.

3.6 PERFORMANCE MONITORING

The first of two rounds of performance borings were advanced north, southeast, and southwest of each injection location on August 23 and 24, 2018 after completion of the ISCO injections. The purpose of the first round performance borings was to assess the vertical and lateral distribution of the KMnO₄ solution and collect soil samples for analysis for CVOCs and KMnO₄. The distance of each of these borings varied from that proposed in the Stage 1 FIWP due to obstructions present within CI Plant 4 (Figures 5A through 5F). Select soil samples from each of the borings were analyzed for the following parameters in accordance with the Sampling and Analysis Plan provided in the Stage 1 FIWP:

- CVOCs by EPA Method 8260C; and
- Permanganate natural oxidant demand (PNOD) by ASTM International Method D7262-10, Test Method A.

The CVOCs results were used to assess the effectiveness of the KMnO₄ solution at reducing CVOC concentrations. The soil samples collected for KMnO₄ analysis could not be analyzed using the proposed method, which is a groundwater-only method. The PNOD analytical results were used to assess both the natural oxidant demand of the subsurface soil matrix and to evaluate whether a 3-percent KMnO₄ solution was sufficient to overcome the natural oxidant demand and destroy the CVOCs present.

The second round of performance borings were advanced within approximately 1.5 feet of first round performance borings where the purple or pink coloration associated with the KMnO₄ solution was observed to persist, indicating that the KMnO₄ solution had not been expended (Figures 6A through 6E). Soil samples were collected from the depth intervals where the KMnO₄

solution was observed in the first round borings and analyzed for CVOCs by EPA Method 8260C. PNOD analysis was not conducted during the second round of performance sampling since sufficient samples were collected during the initial round of sampling to evaluate the results of the ISCO injection.

TCE was detected at concentrations that exceeded PCULs in the first round performance borings at injection location B3. These TCE concentrations in soil were higher than those observed during previous remedial investigation work. Farallon advanced four additional borings (borings P4-15 through P4-18) in the northwestern portion of CI Plant 4 to assess the lateral distribution of TCE in soil (Figure 7).

Farallon conducted performance groundwater monitoring following completion of the ISCO injections per the schedule provided in the Stage 1 FIWP. Performance groundwater monitoring consisted of measuring the water levels in select monitoring and observation wells, collecting groundwater samples to observe coloration indicative of the presence of KMnO₄, and measuring the concentration of KMnO₄ in groundwater samples showing indications of the KMnO₄ solution using a Hach DR890 colorimetric analyzer. The performance groundwater monitoring was conducted daily for 5 days following completion of the injections and weekly until the KMnO₄ solution was no longer detected.

Groundwater samples were collected from monitoring wells showing indications of the KMnO₄ solution during the monitoring described above. The groundwater samples were submitted for analysis of the following:

- CVOCs by EPA Method 8260D;
- Total and dissolved chromium and manganese EPA Method 200.8;
- Total and dissolved iron by EPA Method 6010D;
- Total dissolved solids by Standard Method SM2540C; and
- Hexavalent chromium by Standard Method SM3500-CR B.

Hexavalent chromium was detected at a concentration of 100 micrograms per liter in the field duplicate sample collected from monitoring well MW-6 (Table 3). This concentration exceeded the Washington State Model Toxics Control Act Standard Method B cleanup level, so additional sampling was requested by Ecology. An additional groundwater monitoring event was conducted on October 17, 2018 to assess whether the hexavalent chromium was still present in groundwater proximate to monitoring well MW-6 and in observation wells OBW-4 and OBW-5. Details regarding the performance sampling results follow.

4.0 STAGE I ISCO DISTRIBUTION AND MONITORING RESULTS

The following section provides a summary of the results of the assessment of subsurface distribution achieved during the injection of the KMnO₄ solution, process and performance monitoring results for soil and groundwater, and evaluation of the lateral distribution of TCE conducted in the northwestern portion of the CI Plant 4 canopy at the northernmost/current drum storage area.

4.1 ISCO DISTRIBUTION

The performance borings completed around each injection location were used to evaluate the lateral and vertical distribution of the KMnO₄ solution. Visual observations of staining associated with the presence of the KMnO₄ solution were used to assess the lateral and vertical distribution of the KMnO₄ solution after injection (Figure 5A).

The distribution radii were more laterally uniform during lower-pressure injections into the vadose zone at injection locations F5 and E5 and while injecting into the Water Table Interval at injection location E5. The distribution radii were more irregular during injection at higher pressures at injection locations B3, C5, and D4. The irregular distribution may have been the result of hydraulic fracturing creating preferential pathways in the subsurface.

The vertical distribution of the KMnO₄ solution was irregular regardless of the injection pressures applied (Figures 5B through 5F; Appendix B). The vertical distribution observations indicated that the KMnO₄ solution was not distributed homogeneously throughout the formation. Further, the KMnO₄ solution was not distributed homogeneously within the shallow portion of the soil matrix from beneath the building slab to approximately 6 feet bgs, where the CVOC concentrations exceed the soil cleanup levels protective of the air pathway.

The KMnO₄ solution was observed as a bright purple color in monitoring well MW-6 beginning on August 23, 2018. The KMnO₄ solution was observed as a faint purple color in observation well OBW-5 beginning on September 5, 2018. The groundwater in monitoring well MW-6 and in observation well OBW-5 was observed to be brown during the September 12, 2018 performance groundwater monitoring event, indicating that the KMnO₄ solution had been expended.

4.2 ANALYTICAL RESULTS

Soil samples were collected from the second round of performance borings at depths and locations where the KMnO₄ solution was observed during the first round of performance borings. CVOC results from the first round of performance borings (Table 6) were used as baseline soil samples for comparison against CVOC results from the second round of performance borings (Table 7; Figures 6A through 6E). CVOC concentrations from the second round of performance borings indicated that injection of the 3-percent KMnO₄ solution was not successful at reducing concentrations of CVOCs in vadose zone soil.

PNOD analytical results were elevated in the poorly graded sand layer immediately below the concrete floor slab (Table 6), indicating that a significant volume of KMnO₄ solution, multiple injections, and/or higher concentration solution would be required to overcome the PNOD and effectively reduce CVOC concentrations. PNOD analytical results in the remaining soil types encountered below the poorly graded sand were within the range indicating that ISCO could be successful. However, the CVOC results confirmed the necessity for multiple injections, a higher-concentration KMnO₄ solution, or an alternative oxidant such as sodium permanganate or persulfate that can be more readily mixed at higher concentrations than KMnO₄.

PCE, TCE, and cis-1,2-DCE were detected at concentrations less than the PCULs during the baseline and performance groundwater monitoring events in observation wells OBW-01 through OBW-05 and in monitoring well MW-6 (Table 2; Figure 4). TCE was detected at a concentration of 7.6 micrograms per liter, which exceeds the PCUL established for the Site, in the groundwater sample collected from monitoring well MW-7 during the baseline groundwater monitoring event. The TCE concentration in the groundwater sample collected during the performance groundwater monitoring event was less than the PCUL.

Metals concentrations from the baseline groundwater monitoring event and from the performance groundwater monitoring event are summarized in Table 3. Hexavalent chromium was detected at a concentration of 100 micrograms per liter in the field duplicate sample collected from monitoring well MW-6 on September 18, 2018 (Table 3). This concentration exceeded the Model Toxics Control Act Standard Method B cleanup level, so additional sampling was requested by Ecology in a meeting between Farallon and Ecology on October 11, 2018. An additional groundwater monitoring event was conducted on October 17, 2018 to assess whether the hexavalent chromium was still present in groundwater proximate to monitoring well MW-6 and in observation wells OBW-4 and OBW-5. Hexavalent chromium was not detected at the laboratory practical quantitation limits in the groundwater samples collected on October 17, 2018.

Laboratory analytical reports are provided in Appendix D.

4.3 ADDITIONAL CI PLANT 4 TCE RESULTS

TCE concentrations ranging from 0.082 to 2.4 milligrams per kilogram were detected at a depth of approximately 2 feet bgs in performance borings B3-01, B3-02, and B3-03 proximate to injection location B3 (Table 6; Figure 7) and the northernmost/current drum storage area within the Plant 4 canopy. These TCE concentrations are higher than TCE concentrations previously detected (Table 1; Figure 3).

Four additional borings, borings P4-15 through P4-18, were advanced during a second round of performance borings to further assess the lateral and vertical distribution of TCE. TCE was only detected at boring location P4-16, at a depth of approximately 1 foot bgs (Table 8; Figure 7), indicating that the lateral and vertical limits of TCE-affected soil at the northernmost/current drum storage area could be estimated using the collective soil analytical obtained in 2015 and during the Stage 1 ISCO work.

5.0 CONCLUSIONS

The Stage I ISCO results indicate that ISCO or other injection-based technologies are not appropriate for cleanup of shallow soil with concentrations of PCE and/or TCE exceeding the PCULs protective of the air pathway. This conclusion is based on the following:

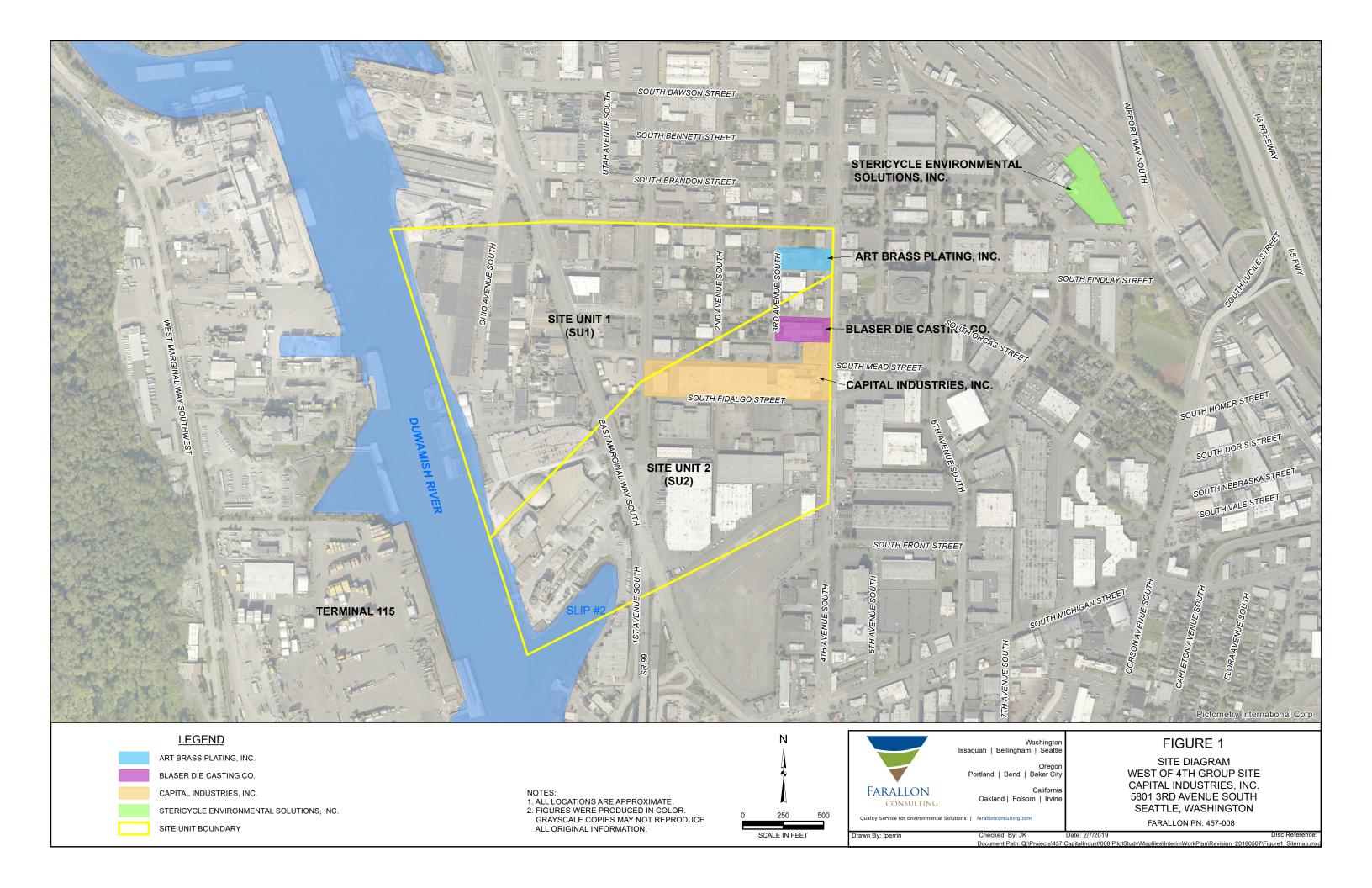
- The limited lateral and vertical distribution of the KMnO₄ solution, which indicates that a substantial number of injection borings would be necessary to introduce an oxidant solution throughout the soil matrix containing CVOCs at concentrations requiring treatment.
- The irregular and inconsistent lateral and vertical distribution regardless of injection pressures, which indicate that heterogeneity of the soil matrix likely will prohibit an oxidant from being distributed in a manner that will bring the oxidant in contact with CVOCs requiring treatment. The ISCO injection results also confirmed that the KMnO4 solution could not be effectively distributed within the upper 2 feet bgs without surfacing.
- PNOD was high in the poorly graded sand layer immediately beneath the building slab where CVOCs at concentrations requiring treatment are present. Consequently, either multiple injections of a 3-percent KMnO₄ solution an alternative oxidant that could be readily mixed at a higher concentration than KMnO₄ would be required to overcome the PNOD and treat the CVOC concentrations.

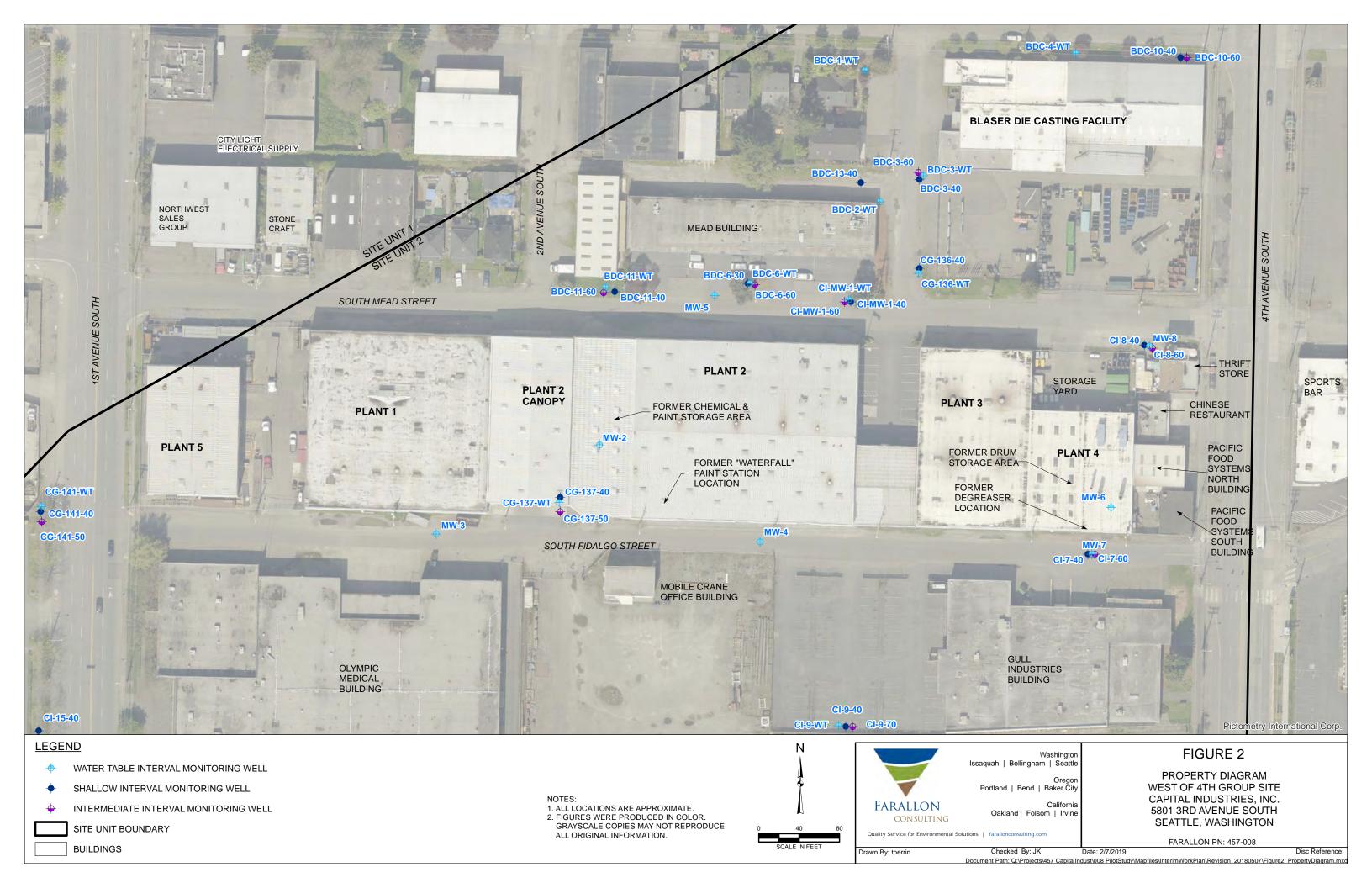
Because an oxidant solution cannot be distributed in a manner that will allow it to come in contact with the CVOCs in the affected portions of the soil matrix, coupled with the likelihood of requiring multiple injections within a substantial number of borings, further application of this technology at CI Plant 4 is technically unfeasible and represents a cost disproportionate to a corresponding benefit. An alternative technology proposed in the Site Unit 2 Feasibility Study will need to be assessed.

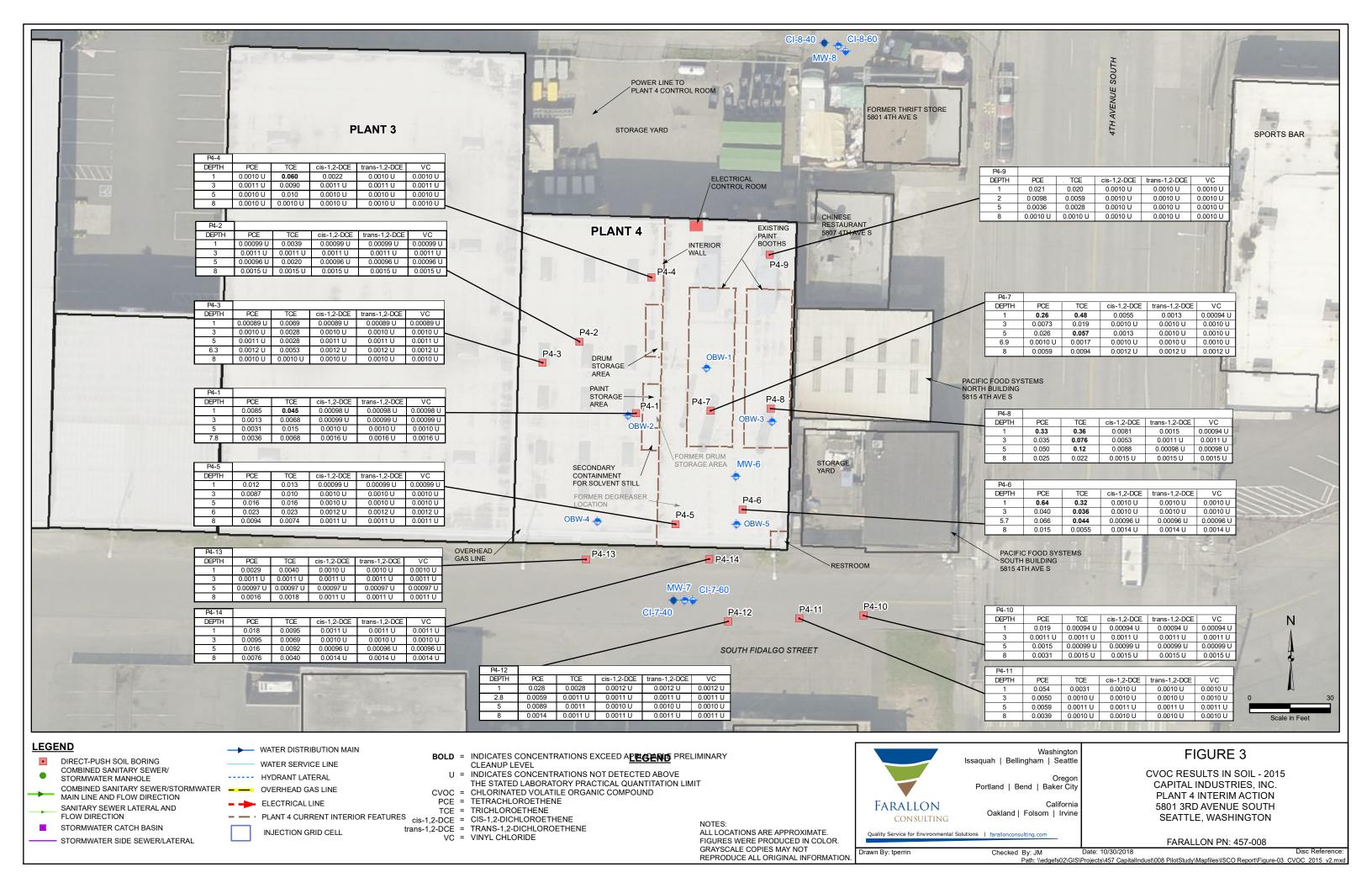
The results of the Stage I ISCO work were also evaluated for the potential to apply ISCO as a technology to reduce or eliminate CVOC concentrations in groundwater. The results indicated that:

- CVOC concentrations at monitoring well MW-6 and observations wells OBW-01 through OBW-05 do not exceed the groundwater cleanup levels protective of the air pathway.
- A KMnO₄ solution greater than 3 percent would be required to effectively reduce CVOC concentrations in groundwater. Multiple injections also would be required.
- The distribution of the KMnO₄ solution within the saturated zone appeared more uniform and had the greatest distribution radius (injection location E5, Figure 5A).
- Hexavalent chromium was generated by the oxidation reaction. However, the hexavalent chromium reverted to trivalent chromium shortly following expenditure of the KMnO₄ solution. Continued application of ISCO could result in a hexavalent chromium plume.

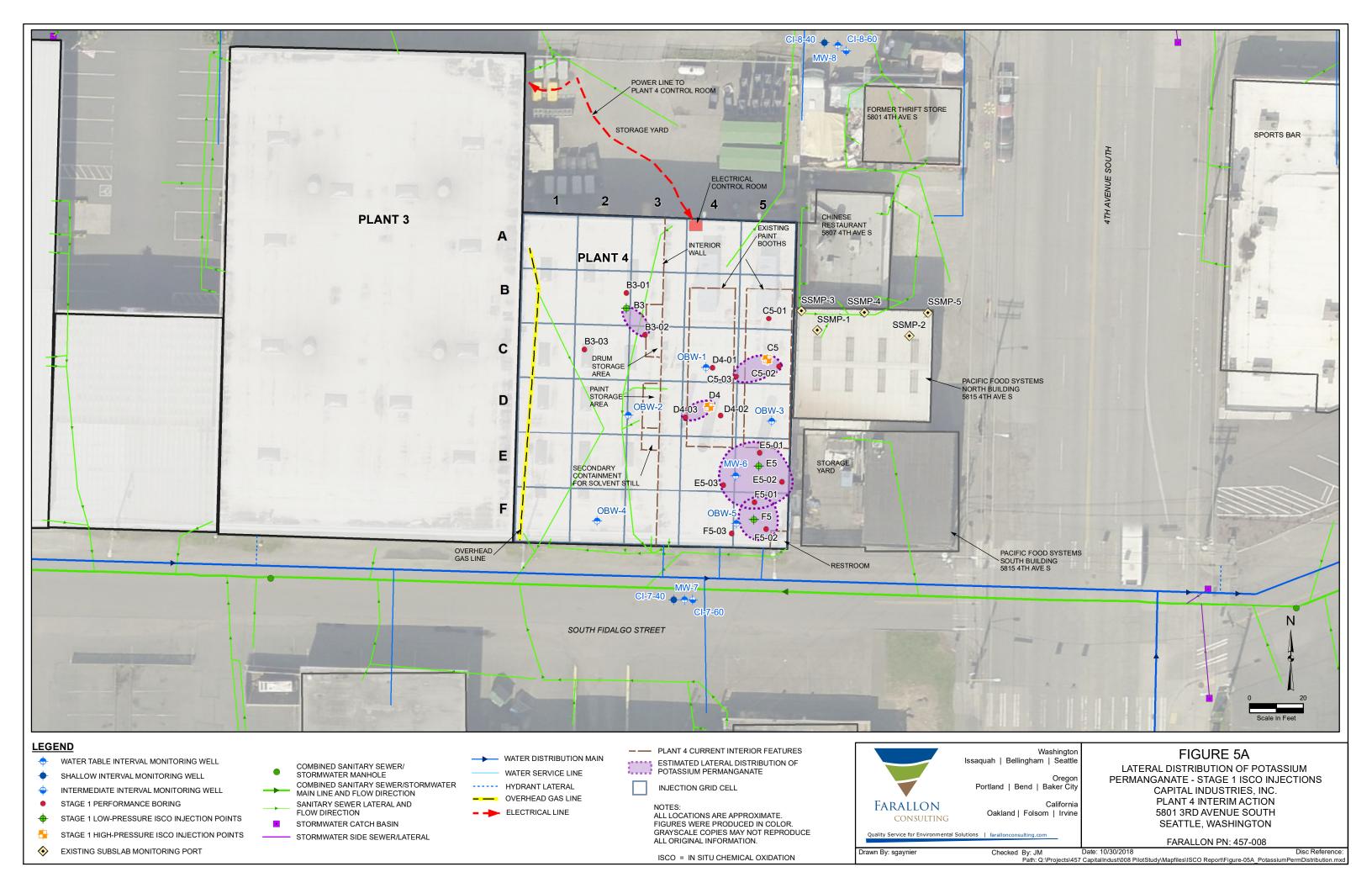
Based on the groundwater analytical data, no further action is required for groundwater treatment at CI Plant 4.

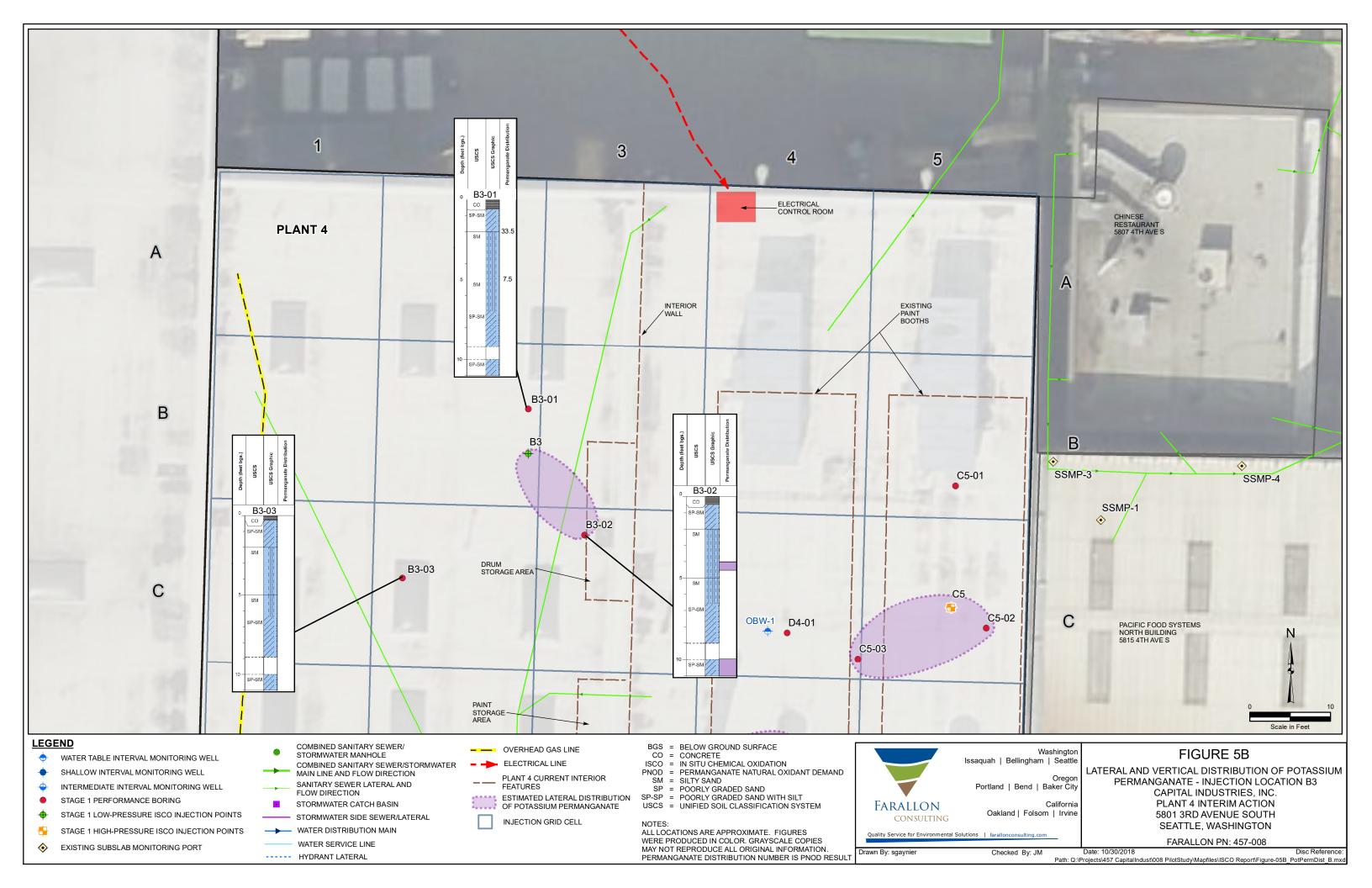

6.0 REFERENCES

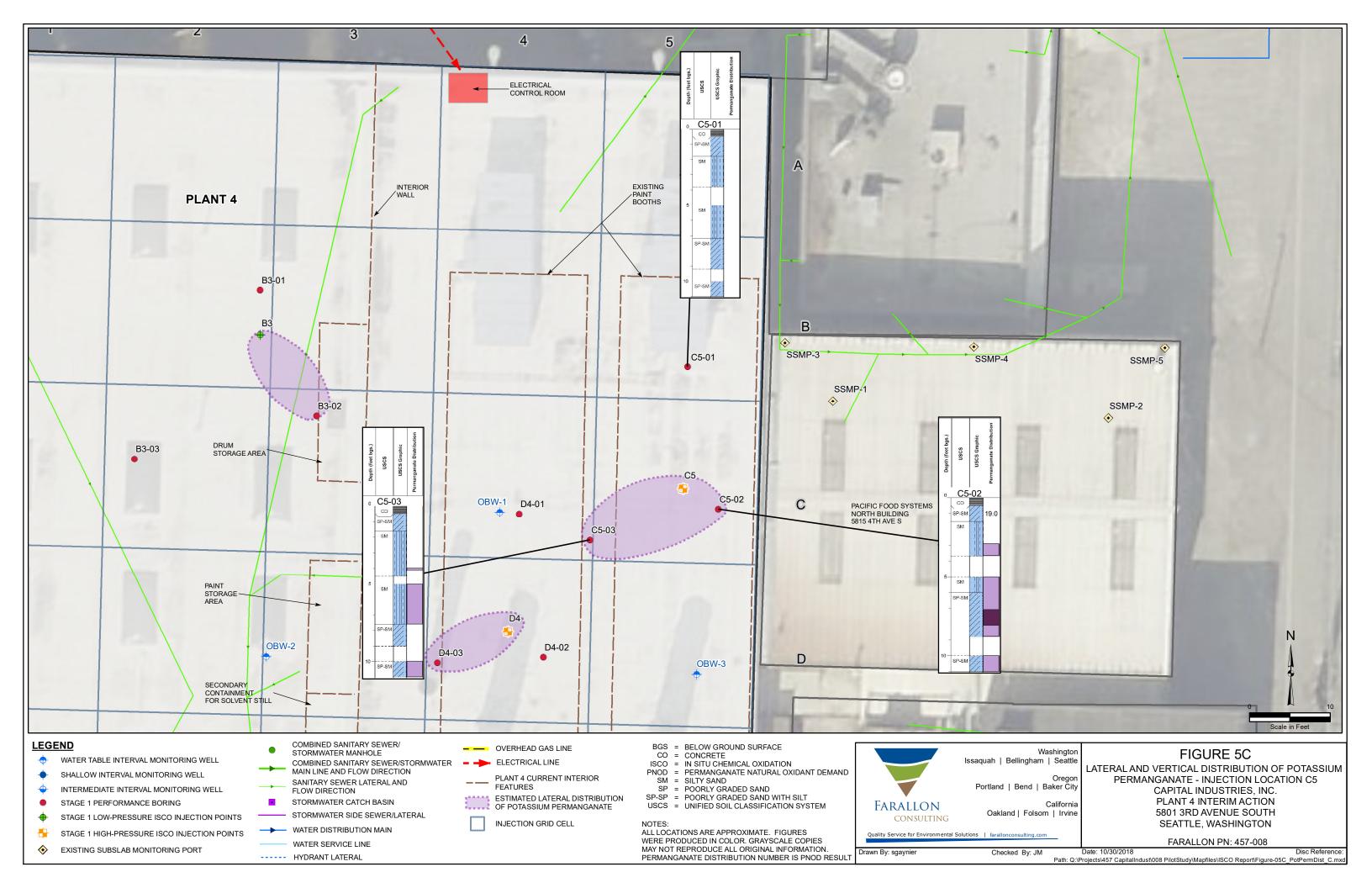

- Cascade Technical Services (Cascade). 2018. Remediation Field Services Report, Capital Industries, 5801 3rd Avenue South, Seattle, WA 98108. Prepared for Farallon Consulting, L.L.C. September 11.
- Farallon Consulting, L.L.C. (Farallon). 2012. Revised Draft Remedial Investigation Report, Capital Industries, Inc., 5801 3rd Avenue South, Seattle, Washington, Agreed Order No. E 5348. Prepared for Capital Industries, Inc. October.
- ———. 2014. Technical Memorandum Regarding Revised Preliminary Cleanup Standards, W4 Joint Deliverable, Seattle, Washington. From Farallon Consulting, L.L.C. To Ed Jones, Washington State Department of Ecology. September 12.
- ———. 2015. Technical Memorandum Regarding Revised Data Gap Memorandum for Site Unit 2, W4 Joint Deliverable, Seattle, Washington. From Farallon Consulting, L.L.C. and Pacific Groundwater Group. To Ed Jones, Washington State Department of Ecology. March 2.
- ——. 2016. Appendix J, Remedial Investigation Data Gap Resolution Summary Report, Site Unit 2, Seattle, Washington. Prepared for Capital Industries, Inc. August 11.
- ———. 2017. Final Capital Industries Plant 4 Interim Action Work Plan, West of 4th Group Site, Capital Industries, Inc., 5815 4th Avenue South, Seattle, Washington. Prepared for West of 4th Avenue Group, Site Unit 2 Joint Deliverable, Capital Industries, Inc., Blaser Die Casting Co., and Stericycle. December 21.
- West of Fourth Group and Pacific Groundwater Group. 2016. West of Fourth Site Unit 2 Feasibility Study, Seattle, Washington. Prepared for West of Fourth Joint Agreed Order, Art Brass Plating, Blaser Die Casting, Capital Industries, and Stericycle. August 11.

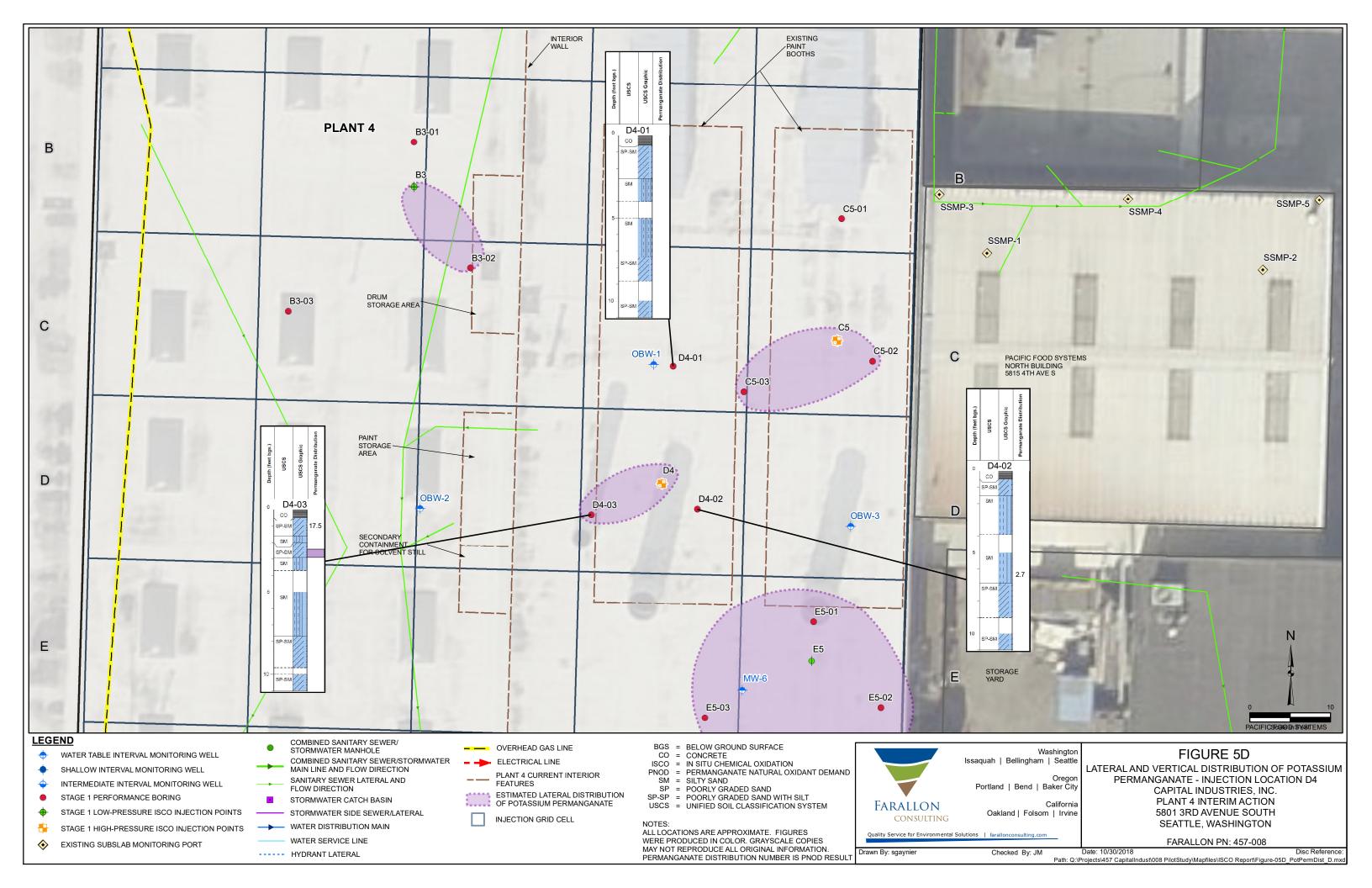

FIGURES

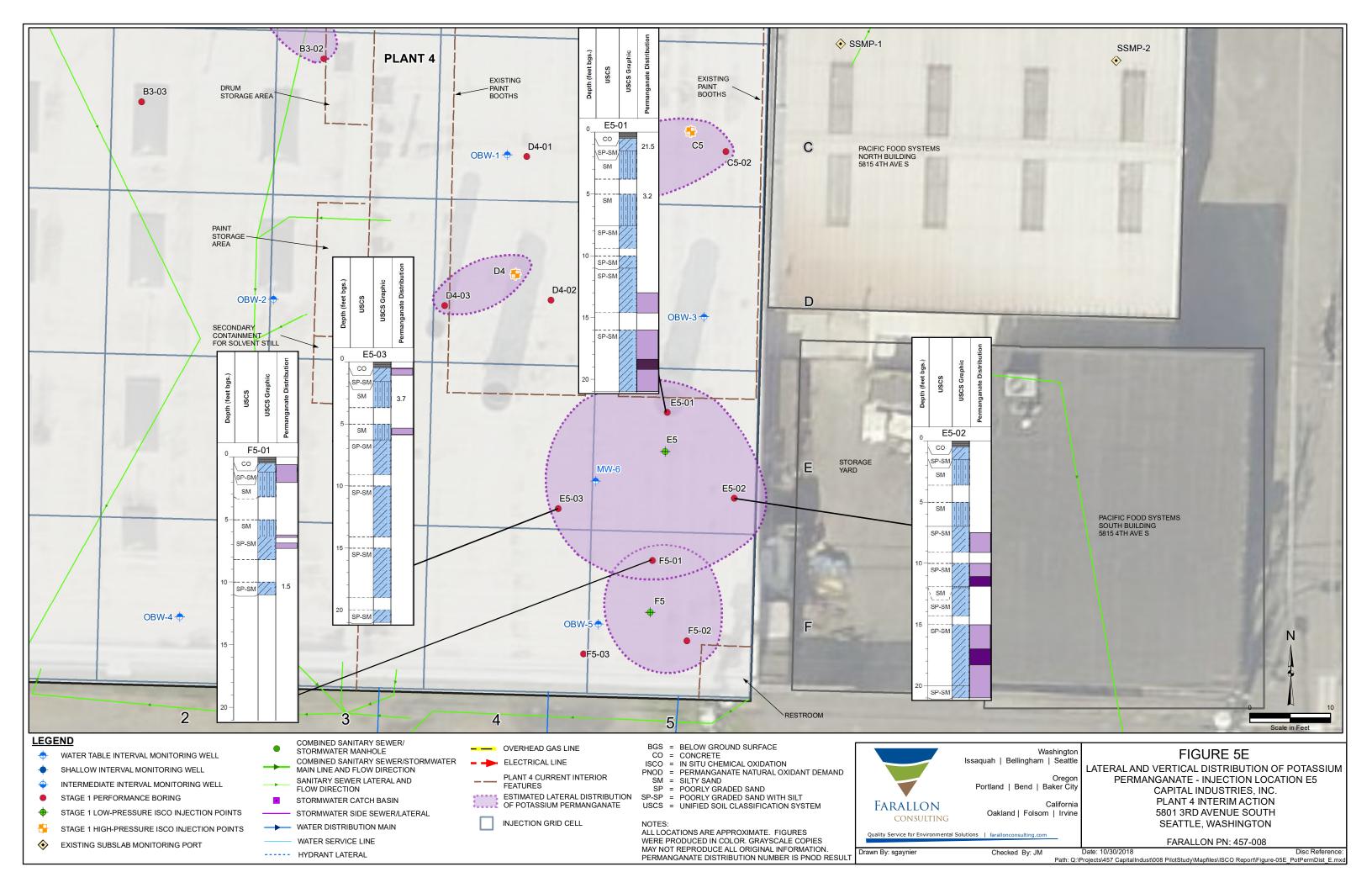
FINAL CAPITAL INDUSTRIES PLANT 4 INTERIM ACTION – STAGE 1
IN-SITU CHEMICAL OXIDATION REPORT
West of 4th Group Site
5801 3rd Avenue South
Seattle, Washington

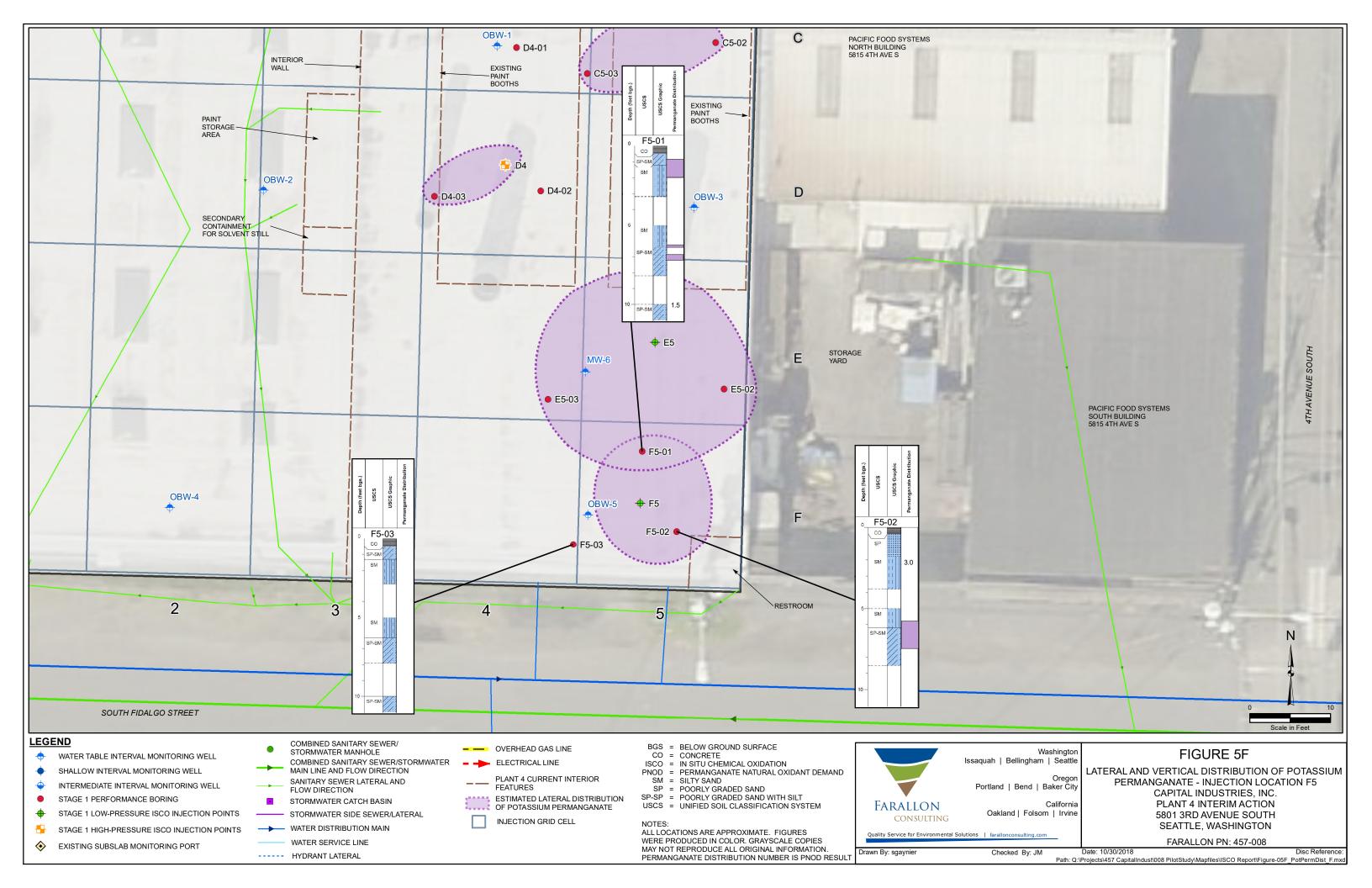

Farallon PN: 457-008

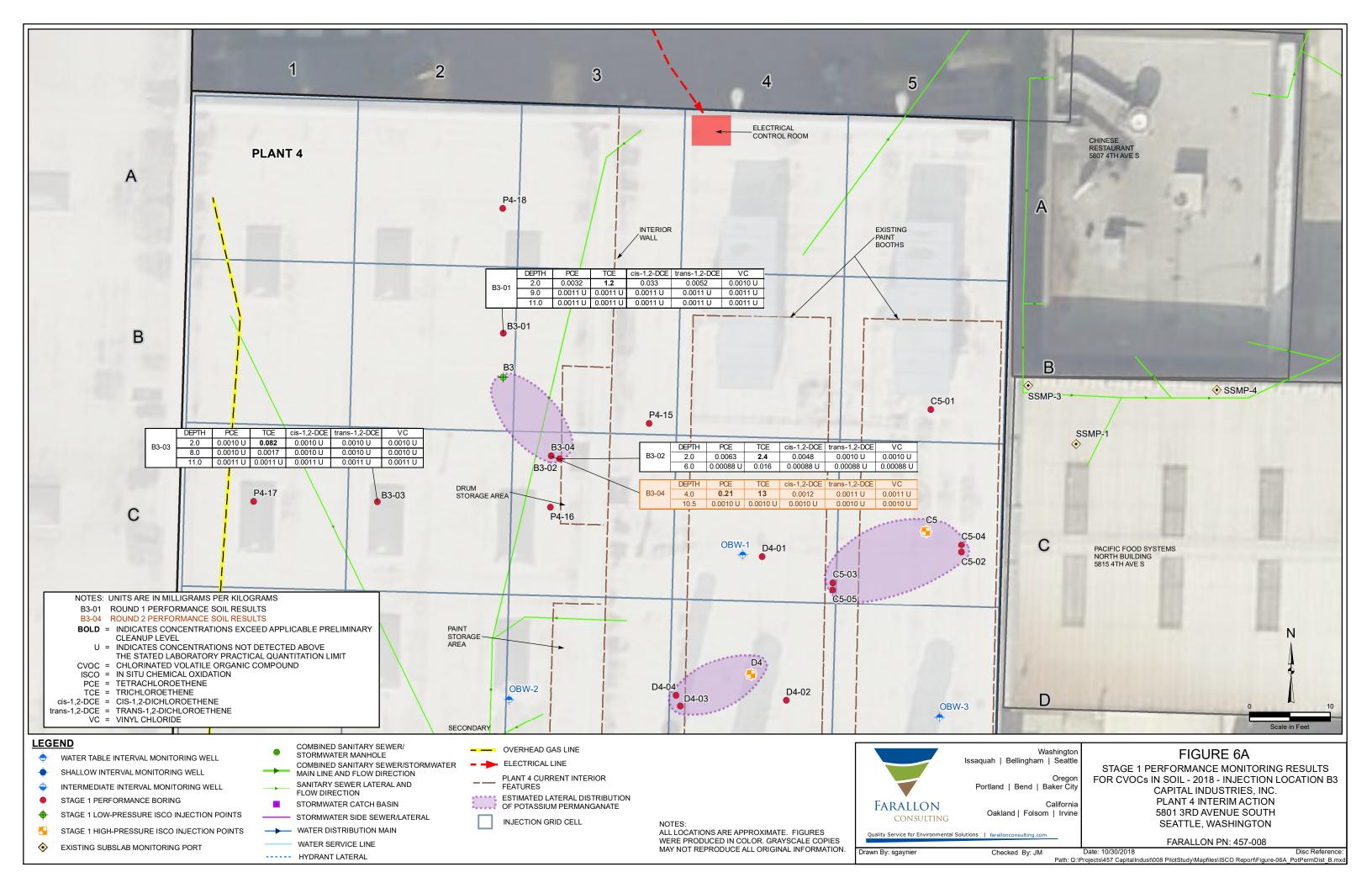


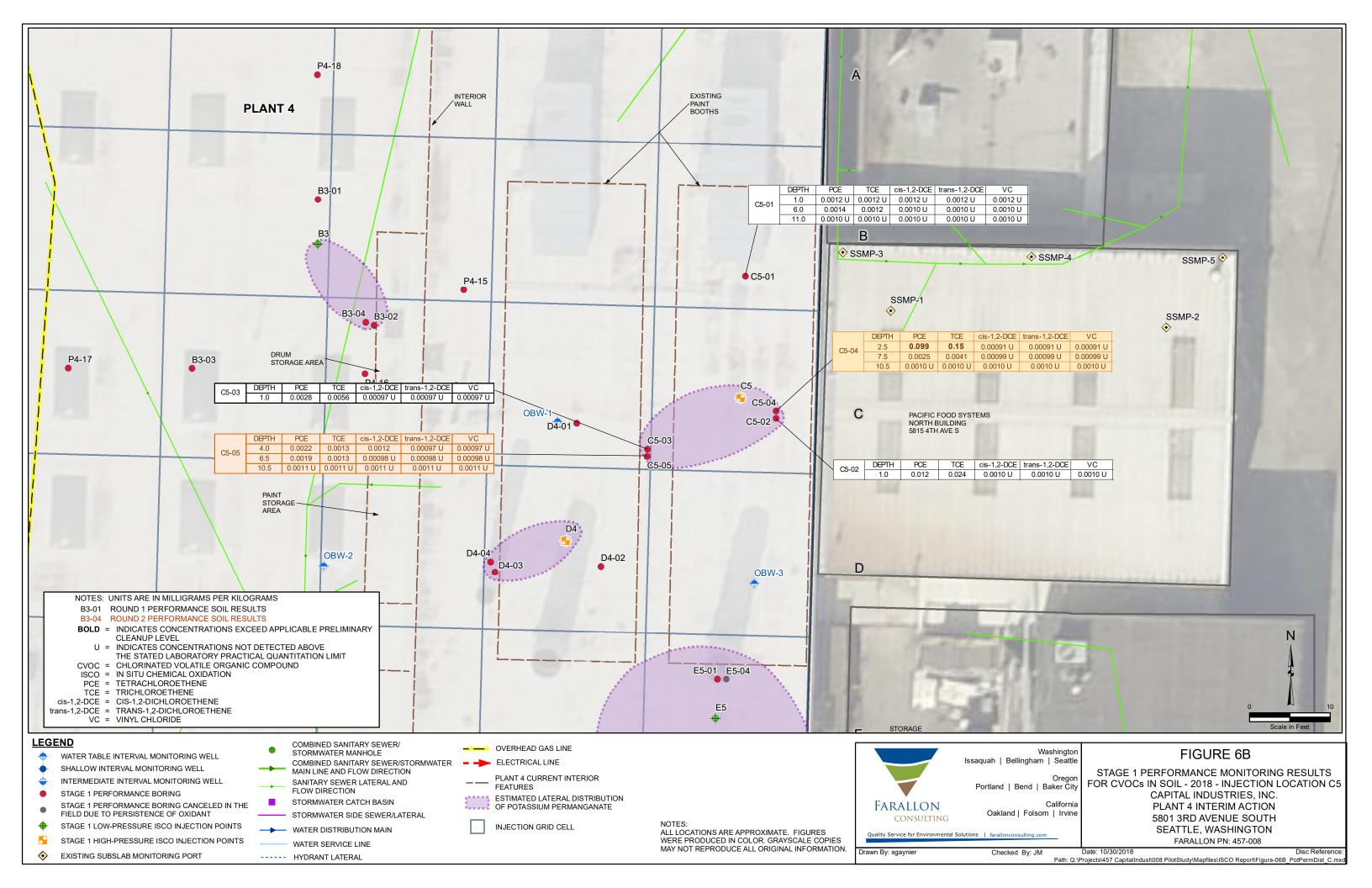


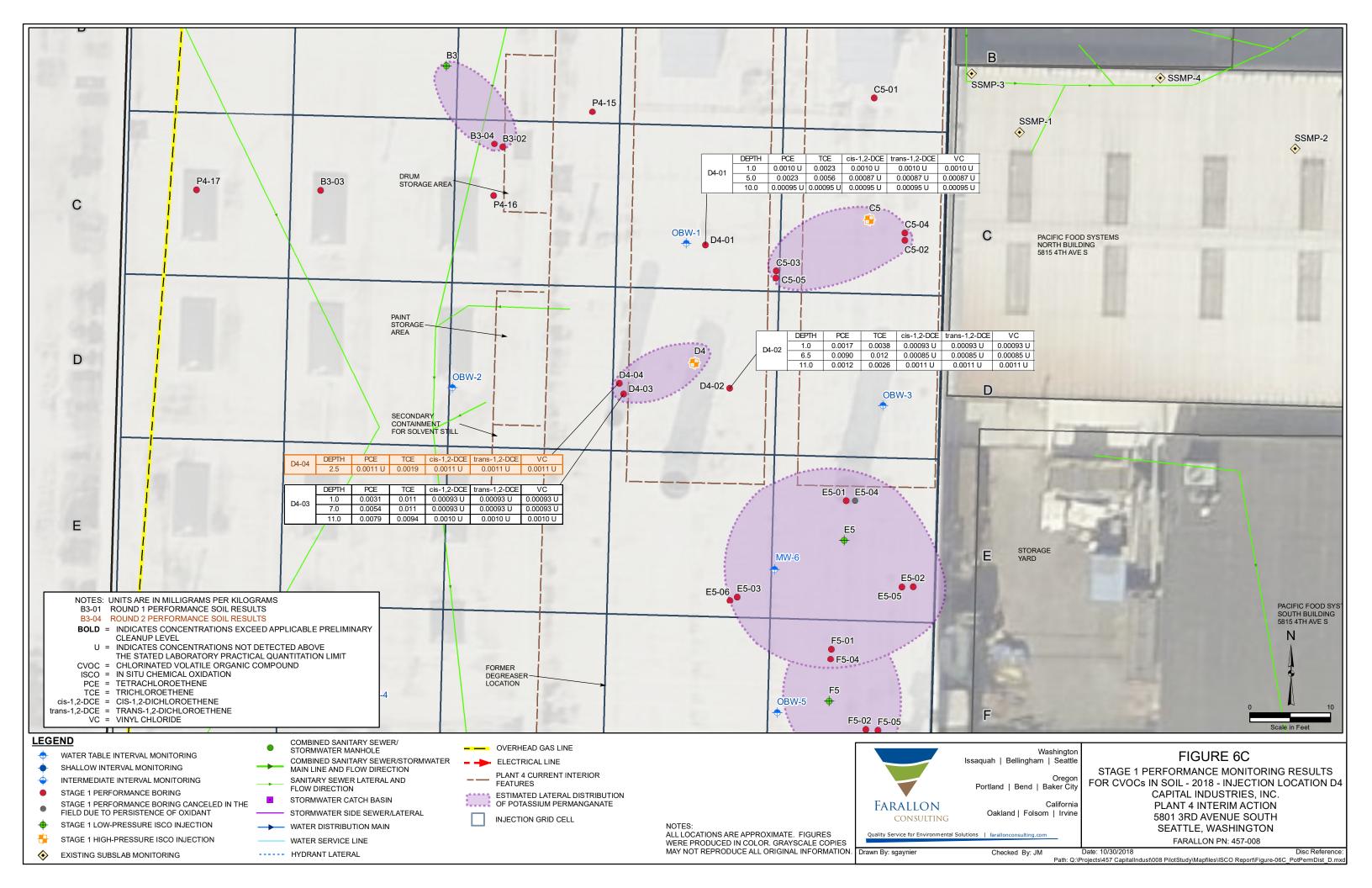


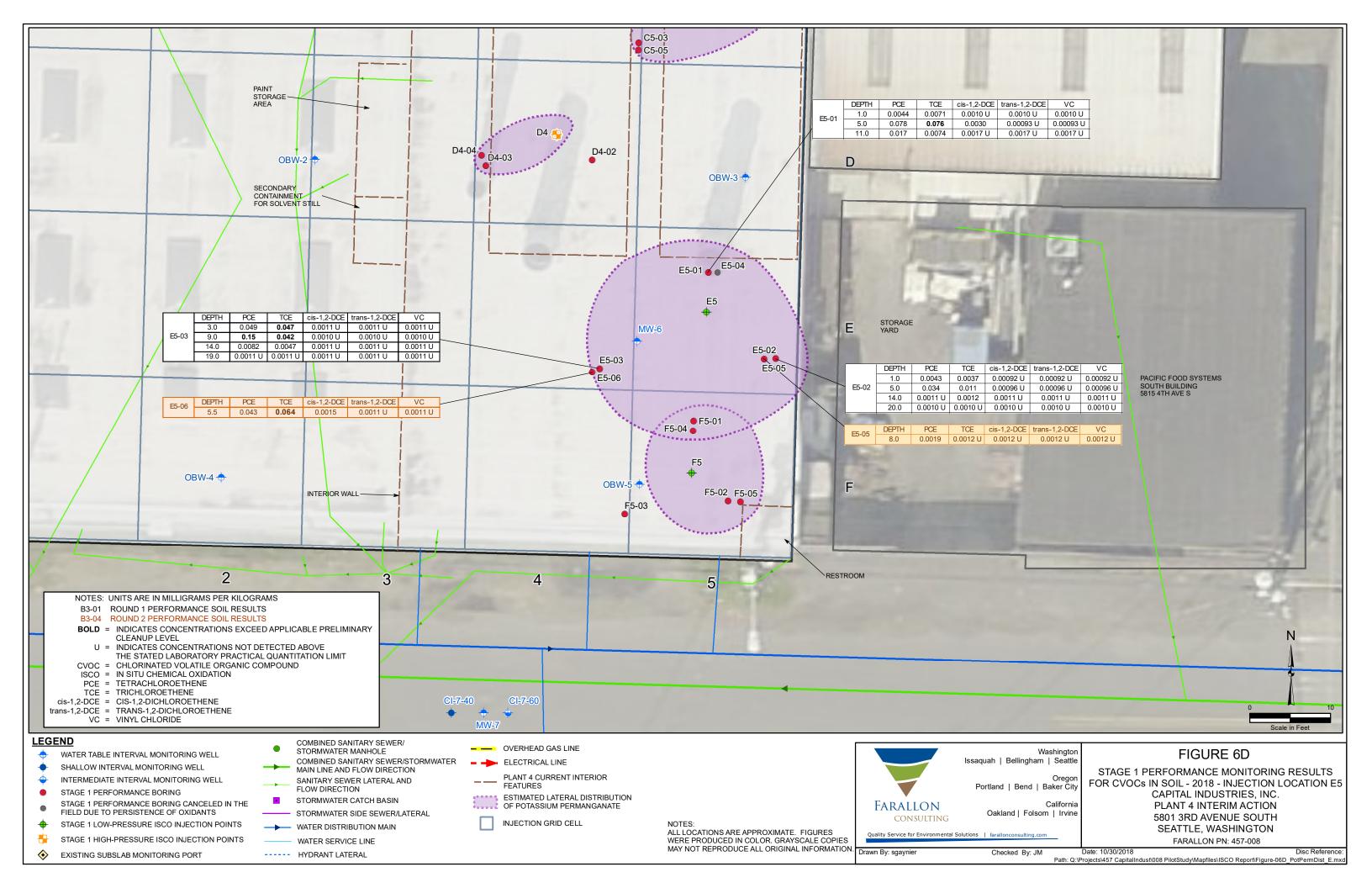


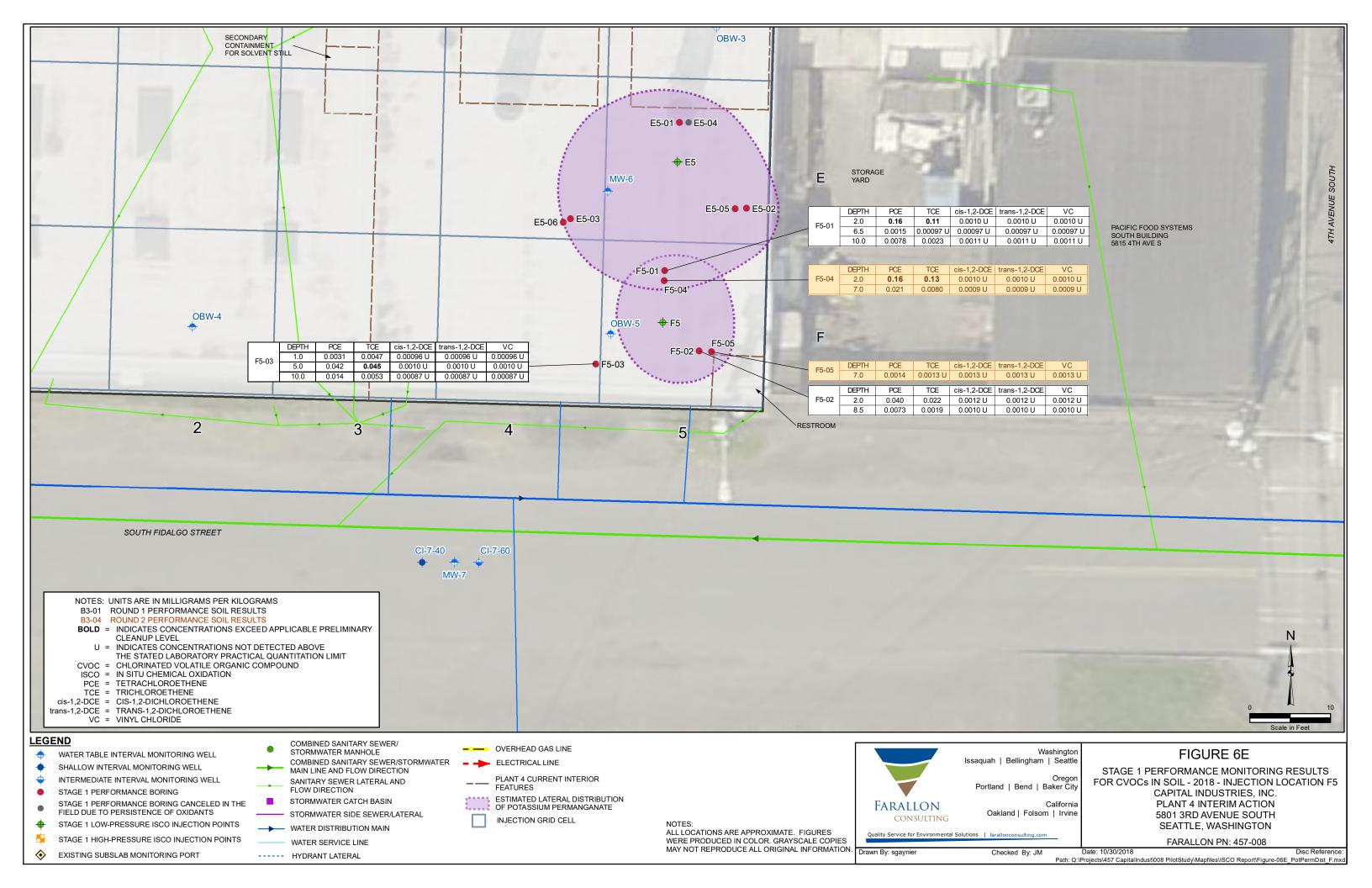


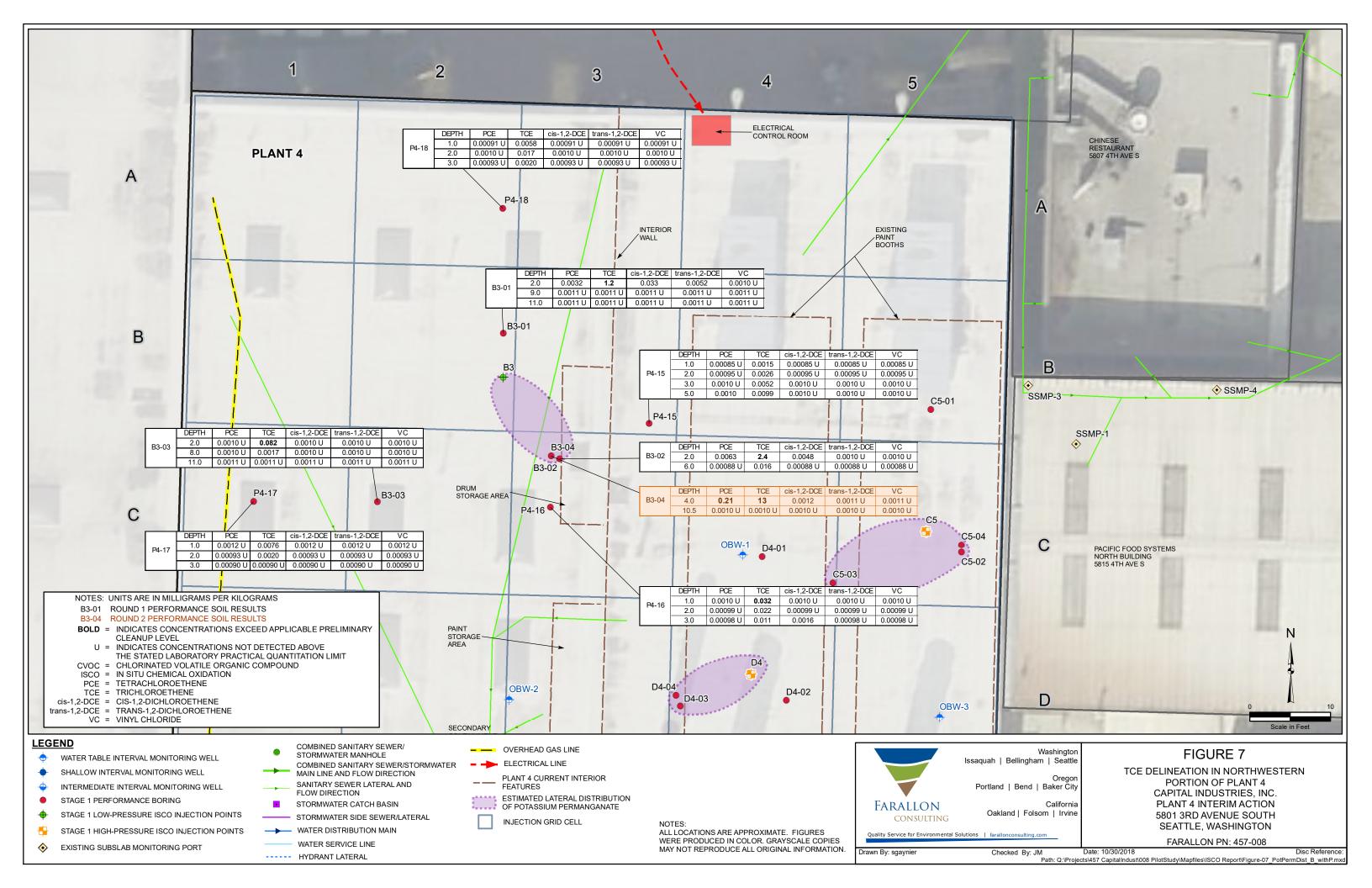












TABLES

FINAL CAPITAL INDUSTRIES PLANT 4 INTERIM ACTION – STAGE 1
IN-SITU CHEMICAL OXIDATION REPORT
West of 4th Group Site
5801 3rd Avenue South
Seattle, Washington

Farallon PN: 457-008

Table 1 Plant 4 - 2015 Soil Analytical Results for CVOCs West of 4th Group Site

Capital Industries, Inc. Seattle, Washington Farallon PN: 457-008

						Analytical Re	esults (milligrams p	oer kilogram) ²	
Sample Location	Sample Identification	Sampled By	Sample Date	Sample Depth (feet) ¹	PCE	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride
	P4-B1-1.0	Farallon	10/17/2015	1.0	0.0085	0.045	< 0.00098	< 0.00098	< 0.00098
P4-1	P4-B1-3.0	Farallon	10/17/2015	3.0	0.0013	0.0068	< 0.00099	< 0.00099	< 0.00099
P4-1	P4-B1-5.0	Farallon	10/17/2015	5.0	0.0031	0.015	< 0.0010	< 0.0010	< 0.0010
	P4-B1-7.8	Farallon	10/17/2015	7.8	0.0036	0.0068	< 0.0016	< 0.0016	< 0.0016
	P4-B2-1.0	Farallon	10/17/2015	1.0	< 0.00099	0.0039	< 0.00099	< 0.00099	< 0.00099
P4-2	P4-B2-3.0	Farallon	10/17/2015	3.0	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
P4-2	P4-B2-5.0	Farallon	10/17/2015	5.0	< 0.00096	0.0020	< 0.00096	< 0.00096	< 0.00096
	P4-B2-8.0	Farallon	10/17/2015	8.0	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015
	P4-B3-1.0	Farallon	10/17/2015	1.0	< 0.00089	0.0069	< 0.00089	< 0.00089	< 0.00089
	P4-B3-3.0	Farallon	10/17/2015	3.0	< 0.0010	0.0028	< 0.0010	< 0.0010	< 0.0010
P4-3	P4-B3-5.0	Farallon	10/17/2015	5.0	< 0.0011	0.0028	< 0.0011	< 0.0011	< 0.0011
	P4-B3-6.3	Farallon	10/17/2015	6.3	< 0.0012	0.0053	< 0.0012	< 0.0012	< 0.0012
	P4-B3-8.0	Farallon	10/17/2015	8.0	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
	P4-B4-1.0	Farallon	10/17/2015	1.0	< 0.0010	0.060	0.0022	< 0.0010	< 0.0010
P4-4	P4-B4-3.0	Farallon	10/17/2015	3.0	< 0.0011	0.0090	< 0.0011	< 0.0011	< 0.0011
P4-4	P4-B4-5.0	Farallon	10/17/2015	5.0	< 0.0010	0.010	< 0.0010	< 0.0010	< 0.0010
	P4-B4-8.0	Farallon	10/17/2015	8.0	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
	P4-B5-1.0	Farallon	10/17/2015	1.0	0.012	0.013	< 0.00099	< 0.00099	< 0.00099
	P4-B5-3.0	Farallon	10/17/2015	3.0	0.0087	0.010	< 0.0010	< 0.0010	< 0.0010
P4-5	P4-B5-5.0	Farallon	10/17/2015	5.0	0.016	0.016	< 0.0010	< 0.0010	< 0.0010
_	P4-B5-6.0	Farallon	10/17/2015	6.0	0.023	0.023	< 0.0012	< 0.0012	< 0.0012
	P4-B5-8.0	Farallon	10/17/2015	8.0	0.0094	0.0074	< 0.0011	< 0.0011	< 0.0011
Preliminary Clea	nup Levels for So	il			$0.08^3/0.044^4$	$0.03^3/0.006^4$	160 ⁵	$0.59^3/6^4$	0.002 ³ /0.001 ⁴

Table 1 Plant 4 - 2015 Soil Analytical Results for CVOCs

West of 4th Group Site Capital Industries, Inc. Seattle, Washington

		_
Farallon	PN:	457-008

					Analytical Results (milligrams per kilogram) ²							
Sample Location	Sample Identification	Sampled By	Sample Date	Sample Depth (feet) ¹	PCE	ТСЕ	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride			
	P4-B6-1.0	Farallon	10/17/2015	1.0	0.64	0.32	< 0.0010	< 0.0010	< 0.0010			
P4-6	P4-B6-3.0	Farallon	10/17/2015	3.0	0.040	0.036	< 0.0010	< 0.0010	< 0.0010			
P4-0	P4-B6-5.7	Farallon	10/17/2015	5.7	0.066	0.044	< 0.00096	< 0.00096	< 0.00096			
	P4-B6-8.0	Farallon	10/17/2015	8.0	0.015	0.0055	< 0.0014	< 0.0014	< 0.0014			
	P4-B7-1.0	Farallon	10/17/2015	1.0	0.26	0.48	0.0055	0.0013	< 0.00094			
	P4-B7-3.0	Farallon	10/17/2015	3.0	0.0073	0.019	< 0.0010	< 0.0010	< 0.0010			
P4-7	P4-B7-5.0	Farallon	10/17/2015	5.0	0.026	0.057	0.0013	< 0.0010	< 0.0010			
	P4-B7-6.9	Farallon	10/17/2015	6.9	< 0.0010	0.0017	< 0.0010	< 0.0010	< 0.0010			
	P4-B7-8.0	Farallon	10/17/2015	8.0	0.0059	0.0094	< 0.0012	< 0.0012	< 0.0012			
	P4-B8-1.0	Farallon	10/17/2015	1.0	0.33	0.36	0.0081	0.0015	< 0.00094			
P4-8	P4-B8-3.0	Farallon	10/17/2015	3.0	0.035	0.076	0.0053	< 0.0011	< 0.0011			
F4-0	P4-B8-5.0	Farallon	10/17/2015	5.0	0.050	0.12	0.0088	< 0.00098	< 0.00098			
	P4-B8-8.0	Farallon	10/17/2015	8.0	0.025	0.022	< 0.0015	< 0.0015	< 0.0015			
	P4-B9-1.0	Farallon	10/17/2015	1.0	0.021	0.020	< 0.0010	< 0.0010	< 0.0010			
P4-9	P4-B9-2.0	Farallon	10/17/2015	2.0	0.0098	0.0059	< 0.0010	< 0.0010	< 0.0010			
P4-9	P4-B9-5.0	Farallon	10/17/2015	5.0	0.0036	0.0028	< 0.0010	< 0.0010	< 0.0010			
	P4-B9-8.0	Farallon	10/17/2015	8.0	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010			
	P4-B10-1.0	Farallon	10/17/2015	1.0	0.019	< 0.00094	< 0.00094	< 0.00094	< 0.00094			
P4-10	P4-B10-3.0	Farallon	10/17/2015	3.0	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011			
r 4 -10	P4-B10-5.0	Farallon	10/17/2015	5.0	0.0015	< 0.00099	< 0.00099	< 0.00099	< 0.00099			
	P4-B10-8.0	Farallon	10/17/2015	8.0	0.0031	< 0.0015	< 0.0015	< 0.0015	< 0.0015			
Preliminary Clea	nup Levels for So	il	-		$0.08^3/0.044^4$	$0.03^3/0.006^4$	160 ⁵	$0.59^3/6^4$	0.002 ³ /0.001 ⁴			

Table 1 Plant 4 - 2015 Soil Analytical Results for CVOCs

West of 4th Group Site Capital Industries, Inc. Seattle, Washington

Farallon PN: 457-008

						Analytical Ro	esults (milligrams p	oer kilogram) ²	
Sample Location	Sample Identification	Sampled By	Sample Date	Sample Depth (feet) ¹	PCE	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride
	P4-B11-1.0	Farallon	10/17/2015	1.0	0.054	0.0031	< 0.0010	< 0.0010	< 0.0010
P4-11	P4-B11-3.0	Farallon	10/17/2015	3.0	0.0050	< 0.0010	< 0.0010	< 0.0010	< 0.0010
14-11	P4-B11-5.0	Farallon	10/17/2015	5.0	0.0059	< 0.0011	< 0.0011	< 0.0011	< 0.0011
	P4-B11-8.0	Farallon	10/17/2015	8.0	0.0039	< 0.0010	< 0.0010	< 0.0010	< 0.0010
	P4-B12-1.0	Farallon	10/17/2015	1.0	0.028	0.0028	< 0.0012	< 0.0012	< 0.0012
P4-12	P4-B12-2.8	Farallon	10/17/2015	2.8	0.0059	< 0.0011	< 0.0011	< 0.0011	< 0.0011
P4-12	P4-B12-5.0	Farallon	10/17/2015	5.0	0.0089	0.0011	< 0.0010	< 0.0010	< 0.0010
	P4-B12-8.0	Farallon	10/17/2015	8.0	0.0014	< 0.0011	< 0.0011	< 0.0011	< 0.0011
	P4-B13-1.0	Farallon	10/17/2015	1.0	0.0029	0.0040	< 0.0010	< 0.0010	< 0.0010
P4-13	P4-B13-3.0	Farallon	10/17/2015	3.0	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
P4-13	P4-B13-5.0	Farallon	10/17/2015	5.0	< 0.00097	< 0.00097	< 0.00097	< 0.00097	< 0.00097
	P4-B13-8.0	Farallon	10/17/2015	8.0	0.0016	0.0018	< 0.0011	< 0.0011	< 0.0011
	P4-B14-1.0	Farallon	10/17/2015	1.0	0.018	0.0095	< 0.0011	< 0.0011	< 0.0011
D4 14	P4-B14-3.0	Farallon	10/17/2015	3.0	0.0095	0.0069	< 0.0010	< 0.0010	< 0.0010
P4-14	P4-B14-5.0	Farallon	10/17/2015	5.0	0.016	0.0092	< 0.00096	< 0.00096	< 0.00096
	P4-B14-8.0	Farallon	10/17/2015	8.0	0.0076	0.0040	< 0.0014	< 0.0014	< 0.0014
Preliminary Clea	nup Levels for So	il			$0.08^3/0.044^4$	$0.03^3/0.006^4$	160 ⁵	$0.59^3/6^4$	$0.002^3/0.001^4$

NOTES:

Results in **bold** denote reporting limits that exceed the most conservative preliminary cleanup level protective of indoor air.

 $\label{eq:pce} PCE = tetrachloroethene$

TCE = trichloroethene

CVOCs = chlorinated volatile organic compounds

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8260B.

 $^{^3}$ Soil cleanup levels for protection of air quality. These are preliminary values only. Values calculated using Model Toxics Control Act (MTCA) Equation 747-1 where the potable Method B groundwater cleanup level was used as C_w . Concentrations of hazardous substances in soil that meet the potable groundwater protection standard currently are considered sufficiently protective of the air pathway for unrestricted and industrial land uses.

 $^{^4}$ Soil cleanup levels for protection of surface water quality. These are preliminary values only. Values are calculated using MTCA Equation 747-1 where the groundwater cleanup level protective of surface water in this table was used as C_w .

⁵Cleanup level is based on standard MTCA Method B (unrestricted land use) values from the Cleanup and Risk Calculation tables.

https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

Table 2 Groundwater Analytical Results for CVOCs

West of 4th Group Site Capital Industries, Inc. Seattle, Washington

Farallon PN: 457-008

			Analytical Results (micrograms per liter) ¹										
Sample		Sample			cis-1,2-	trans-1,2-	Vinyl						
Location	Sample Date	Identification	PCE	TCE	Dichloroethene	Dichloroethene	Chloride						
	Baseline Groundwater Results												
OBW-01	7/2/2018	OBW-01-070218	0.43	0.82	< 0.20	< 0.20	< 0.20						
OBW-02	7/3/2018	OBW-02-070218	0.53	1.2	< 0.20	< 0.20	< 0.20						
OBW-03	7/2/2018	OBW-03-070218	< 0.20	0.43	0.38	< 0.20	< 0.20						
OBW-04	7/2/2018	OBW-04-070218	2.0	5.0	0.39	< 0.20	< 0.20						
OBW-05	7/2/2018	OBW-05-070218	2.1	2.8	0.68	< 0.20	< 0.20						
MW-6	7/2/2018	MW-06-070218	4.5	3.2	< 0.20	< 0.20	< 0.20						
MW-7	7/2/2018	MW-07-070218	12	7.6	2.4	< 0.20	0.40						
		Per	formance Gro	undwater Res	sults								
OBW-05	9/18/2018	OBW-5-091818	7.3	4.8	0.61	< 0.20	< 0.20						
MW-6	9/18/2018	MW6-091818	8.5	5.5	< 0.20	< 0.20	< 0.20						
1V1 VV -O	9/18/2018	MW60-091818	8.3	5.1	< 0.20	< 0.20	< 0.20						
MW-7	9/24/2018	MW-7-092418	5.9	5.0	3.9	< 0.20	0.53						
Preliminary C	Cleanup Levels-Wa	ter Table Zone	116 ²	6.9 ²	NR ³	559 ²	1.3 ²						

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

PCE = tetrachloroethene

TCE = trichloroethene

CVOCs = chlorinated volatile organic compounds

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 8260C.

²Groundwater cleanup levels protective of the air pathway for unrestricted land use (residential and commercial sites) and industrial land use were derived using the following equation: Gwcul = Aircul/GIVF.

³NR denotes "not researched," which indicates that no regulatory standards or toxicity information are available for the constituent of concern to derive a cleanup level for the medium of potential concern.

Table 3 Groundwater Analytical Results for Metals West of 4th Group Site Capital Industries, Inc.tion

Seattle, Washington Farallon PN: 457-008

				Analytical Results (micrograms per liter) ¹											Analytical Results (milligrams per liter)		
Sample Location	Sample Date	Sample Identification	Dissolved Arsenic	Total Cadmium	Dissolved Cadmium	Total Chromium	Dissolved Chromium	Hexavalent Chromium ²	Total Iron	Dissolved Iron	Total Lead	Dissolved Lead	Total Manganese	Dissolved Manganese	Total Mercury	Dissolved Mercury	Total Dissolved Solids ³
Baseline Groundwater Results																	
OBW-01 7/2/2018 OBW-01-070218 < 3.0 < 4.4 < 4.0 12 < 10 8,500 570 1.9 1.0 150 86 < 0.50 < 0.50												150					
OBW-02	7/3/2018	OBW-02-070218	< 3.0	< 4.4	< 4.0	12	< 10		10,000	82	2.1	< 1.0	100	64	< 0.50	< 0.50	130
OBW-03	7/2/2018	OBW-03-070218	< 3.0	< 4.4	< 4.0	14	< 10		8,300	1,200	15	1.0	130	82	< 0.50	< 0.50	130
OBW-04	7/2/2018	OBW-04-070218	< 3.0	< 4.4	< 4.0	< 11	< 10		4,400	1,500	< 1.1	< 1.0	170	150	< 0.50	< 0.50	190
OBW-05	7/2/2018	OBW-05-070218	< 3.0	< 4.4	< 4.0	< 11	< 10		6,200	3,300	< 1.1	< 1.0	260	220	< 0.50	< 0.50	270
MW-6	7/2/2018	MW-06-070218	< 3.0	< 4.4	< 4.0	< 11	< 10		1,200	< 56	< 1.1	< 1.0	130	120	< 0.50	< 0.50	220
MW-7	7/2/2018	MW-07-070218	< 3.0	< 4.4	< 4.0	< 11	< 10	< 50	56,000	2,800	< 1.1	< 1.0	270	180	< 0.50	< 0.50	230
							Pe	erformance Gro	oundwater R	esults							
OBW-04	10/17/2018	OBW-4-101718						< 50									
OBW-05	9/18/2018	OBW-5-091818				170	37	< 50	1,000	250			4,600	4,700			560
OBW-03	10/17/2018	OBW-5-101718						< 50	-								
	9/18/2018	MW6-091818				110	50	< 50	3,300	< 56			9,500	1,800			670
MW-6	9/18/2018	MW60-091818				460	110	100	100,000	< 56			280,000	12			690
1V1 VV -O	10/17/2018	MW-6-101718						< 50									
	10/17/2018	MW60-101718						< 50									
Cleanup Leve	ls for Groundwa	iter	5 ⁴	5	54	5	04	48 ⁵	11,	200 ⁵		15 ⁴	2,2	240 ⁵		$\overline{2^4}$	NE

NE = not established

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

Baseline groundwater samples were collected during one sampling event that spanned the evening of July 2, 2018 and early morning of July 3, 2018.

[—] denotes sample not analyzed.

¹Analyzed by U.S. Environmental Protection Agency Method 200.8/6010D/7470A, unless otherwise noted.

²Analyzed by Standard Method 3500-Cr B.

³Analyzed by Standard Method 2540C.

⁴Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁵Washington State Model Toxics Control Act Cleanup Regulation Cleanup Levels and Risk Calculations (CLARC), Standard Method B Values for Groundwater, https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

Table 4 Process Monitoring at Monitoring and Observation Wells

West of 4th Group Site Capital Industries, Inc. Seattle, Washington Farallon PN: 457-008

Injection				Depth to Water (feet below top of	Pressure	
Location	Date	Observation Well	Time	casing)	(Inches of Water)	Comments
		OBW-1	1130	9.27	,	Initial
			1130	9.20	NA	Initial
		OBW-3	1558	9.19	0.020	
		-	1615 1640	9.19 9.19	0.020 0.025	
			1130	8.22	NA	Initial
			1510	9.19	0.017	
			1540	9.19	0.062	
	8/18/2018	OWB-5	1605	9.19	0.070	
		-	1630 1650	9.19 9.19	0.070 0.081	
F5			1732	9.19	0.081-0.083	
_			1130	9.08		Initial
		MW-6	1555	9.09	NA	
		-	1623	9.09	NA	
		MW-7	1645 1130	9.09 8.73	NA NA	Initial
•		OBW-1	810	9.28	NA NA	Initial
		OBW-3	810	9.18	NA	Initial
	8/19/2018	OBW-5	810	9.19	NA	Initial
	8/19/2018	MW-6	810	9.11	NA	Initial
		MW-7	810	8.71	NA	Initial
			1305	8.70	0.010	T 2: 1
		OBW-1 OBW-2	810 1525	9.28 8.74	NA 0.009	Initial
		OBW-2	810	9.18	NA	Initial
	8/19/2018	OBW-5	810	9.19	NA	Initial
		MW-6	810	9.11	NA	Initial
		MW-7	810	8.71	NA	Initial
•			1305	8.70	0.010	T 5: 1
		-	1622 1740	9.20 9.18	0.000	Initial
		-	1815	9.23	0.000	
			1915	9.23	0.000	
		OBW-1	1940	9.20	0.000	
			2015	9.20	0.000	
		-	2212 2227	9.20 9.18	0.000	
			2255	9.15	0.000	
			1620	9.20		Initial
			1744	9.14	0.019	
			1807	9.12	0.015	
		OBW-3	1843 1910	9.08 9.08	0.008	
		GD W-3	1910	9.08	0.000	
E5			2012	9.07	-0.005	
			2218	9.06	0.009	
			2252	9.03	0.018	T 111 1
	8/20/2018		1615	9.2 9.15	0.000 0.016	Initial
		 	1750 1802	9.13	0.016	
			1845	9.10	0.013	
		OBW-5	1905	9.10	0.007	
			1947	9.10	0.005	
			2005	9.07	0.003	
		}	2215 2250	9.08 9.05	0.013 0.016	
			2308	9.07	0.008	
			1618	9.11	NA	Initial
			1748	8.96	NA	
			1805	8.93	NA	
			1838 1908	8.88 8.87	NA NA	
		MW-6	1908	8.86	NA NA	
		<u> </u>	2010	8.86	NA NA	
			2216	8.86	NA	
			2248	8.88	NA	
			2300	8.88	NA	

Table 4 Process Monitoring at Monitoring and Observation Wells

West of 4th Group Site Capital Industries, Inc. Seattle, Washington Farallon PN: 457-008

				Depth to Water		
Injection				(feet below top of	Pressure	
Location	Date	Observation Well	Time	casing)	(Inches of Water)	Comments
			1618	9.32		Initial
		_	1718	9.27	0.010	
		OBW-1	1818	9.23	0.000	
		-	1843	9.21	0.117	
			1934	9.20		Injection stopped at 7:31 p.m.
		-	1612 1726	9.21 9.11	-0.014 0.022	Initial
		OBW-3	1814	9.11	0.022	
		ODW-3	1848	9.08	0.000	
		-	1928	9.08	-0.054	
E5	8/21/2018		1608	9.21	0.000	Initial
			1730	9.14	0.000	
		OBW-5	1810	9.11	0.000	
		=	1850	9.10	0.000	
			1924	9.08	0.000	
		-	1610	9.13	NA NA	Initial
		MW	1725 1812	8.96 8.91	NA NA	
		MW-6	1845	8.93	NA NA	
		-	1926	8.87	NA NA	
		OBW-1	810	9.28		Initial
		OBW-1	1525	8.74	0.009	initiai
		OBW-3	810	9.18		Initial
	8/19/2018	OBW-5	810	9.19	NA	Initial
		MW-6	810	9.11	NA	Initial
		MW-7	810	8.71	NA	Initial
			1622	9.20		Initial
			1740	9.18	0.000	
		_	1815	9.23	0.000	
			1915	9.23	0.000	
		OBW-1	1940	9.20	0.000	
		-	2015	9.20	0.000	
			2212	9.20	0.000	
		-	2227 2255	9.18 9.15	0.000	
			1620	9.13	0.000	Initial
		-	1744	9.14	0.019	initiai
		-	1807	9.12	0.002	
		-	1843	9.08	0.008	
		OBW-3	1910	9.08	0.000	
			1945	9.07	0.000	
В3			2012	9.07	0.005	
В3		_	2218	9.06	0.009	
			2252	9.03	0.018	
	8/20/2018		1615	9.20		Initial
			1750	9.15	0.018	
			1802	9.13	0.015	
		-	1845 1905	9.10 9.10	0.014 0.007	
		OBW-5	1905	9.10	0.007	
			2005	9.07	0.003	
		-	2215	9.08	0.003	
			2250	9.05	0.016	
			2308	9.07	0.008	
			1618	9.11	NA	Initial
			1748	8.96	NA	
			1805	8.93	NA	
			1838	8.88	NA	
		MW-6	1908	8.87	NA	
			1942	8.86	NA	
		-	2010	8.86	NA	
			2216	8.86	NA NA	
			2248 2300	8.88 8.88	NA NA	
			43UU	0.00	NA	

Table 4 Process Monitoring at Monitoring and Observation Wells West of 4th Group Site Capital Industries, Inc.

Seattle, Washington **Farallon PN: 457-008**

				Depth to Water		
Injection				(feet below top of	Pressure	
Location	Date	Observation Well	Time	casing)	(Inches of Water)	Comments
			1618	9.32	-0.012	Initial
		OBW-1	1718	9.27	0.010	
			1818	9.23	0.000	Injection stopped at 6:00 p.m.
			1612	9.21	-0.014	Initial
		OBW-3	1726	9.11	0.022	
В3	8/21/2018		1814	9.07	0.000	Injection stopped at 6:00 p.m.
ВЗ	8/21/2018		1608	9.21	0.000	Initial
		OBW-5	1730	9.14	0.000	
			1810	9.11	0.000	Injection stopped at 6:00 p.m.
			1610	9.13	NA	Initial
		MW-6	1725	8.96	NA	
			1812	8.91	NA	Injection stopped at 6:00 p.m.
			1618	9.32	-0.012	Initial
			1843	9.21	0.117	
			1934	9.20	-0.009	
		OBW-1	2132	9.25	0.064	
			2220	9.25	0.082	
			2300	9.25	0.064	
			2328	9.25	0.102	
			1612	9.21	-0.014	Initial
			1848	9.08	0.021	
			1928	9.08	-0.054	
		OBW-3	2154	9.18	-0.007	
			2218	9.18	0.016	
		-	2305	9.18	0.046	
D4	8/21/2018		2325	9.18	0.030	
			1608	9.21	0.000	Initial
			1850	9.10	0.000	
		OBW-5	1924	9.08	0.000	
		OBW-3	2158	9.18	0.000	
			2214	9.18	0.000	
			2326	9.18	0.000	
			1610	9.13	NA	Initial
			1845	8.93	NA	
			1926	8.87	NA	
		MW-6	2140	8.88	NA	
			2215	9.08	NA	
			2302	9.08	NA	
			2328	9.08	NA	
			1705	9.31	0.004	
			1850	9.28	0.105	
		OBW-1	1950	9.28	0.016	
			2010	9.28	0.078	
			2025	9.28	0.081	
			1708	9.22	0.000	
			1848	9.20	0.065	
C5	8/21/2018	OBW-3	1956	9.20	0.027	
<i>C3</i>	0,21,2010		2006	9.18	0.060	
			2027	9.17	0.053	
		OBW-5	1710	9.23	0.000	
			1706	9.14	NA	
			1849	9.11	NA	
		MW-6	1954	9.11	NA	
			2008	9.11	NA	
			2028	9.11	NA	

NOTES:

NA = not applicable

$Table\ 5$ Stage 1 Groundwater Performance Monitoring Depth to Groundwater and MnO_4 Concentrations

West of 4th Group Site Capital Industries, Inc. Seattle, Washington Farallon PN: 457-008

Sample		Depth to Water		MnO ₄ Concentration
Location	Date	(feet) ¹	Color	(milligrams per liter) ²
	8/23/2018	9.34	Clear	NM
	8/24/2018	9.38	Clear	NM
	8/27/2018	9.44	Clear	NM
OBW-1	8/28/2018	9.49	Clear	NM
	8/29/2018	9.53	Clear	NM
	9/5/2018	9.56	Clear	NM
	9/12/2018	9.52	Clear	NM
	8/23/2018	9.20	Clear	NM
	8/24/2018	9.28	Clear	NM
	8/27/2018	9.36	Clear	NM
OBW-3	8/28/2018	9.43	Clear	NM
	8/29/2018	9.45	Clear	NM
	9/5/2018	9.63	Clear	NM
	9/12/2018	9.45	Clear	NM
	8/23/2018	9.26	Clear	NM
	8/24/2018	9.28	Clear	NM
	8/27/2018	9.37	Clear	NM
OBW-5	8/28/2018	9.43	Clear	NM
OBW-3	8/29/2018	9.44	Clear	NM
	9/5/2018	9.58	Purple	71.44
	9/12/2018	9.44	Light Brown/ Slightly Turbid	0.00
	8/23/2018	9.16	Purple	152.10
	8/24/2018	9.20	Purple	152.30
	8/27/2018	9.27	Purple	152.10
MW-6	8/28/2018	9.32	Purple	151.70
1V1 VV -U	8/29/2018	9.37	Purple	152.00
	9/5/2018	9.50	Purple	152.10
	9/12/2018	9.37	Moderately Brown/ Moderately Turbid	0.00

NOTES:

²Concentration measured in the field using a Hach DR 890.

NM = not measured

 MnO_4 = permanganate

¹Measured in feet below top of casing.

Table 6 Stage 1 Round 1 Performance Soil Analytical Results West of 4th Group Site Capital Industries, Inc.

Seattle, Washington Farallon PN: 457-008

						Analytical R	esults (milligrams)	per kilogram) ²		PNOD A	nalytical Resul	ts (grams per l	kilogram) ³
Sample Location	Sample Identification	Sampled By	Sample Date	Sample Depth (feet) ¹	PCE	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride	PNOD Average	PNOD Replicate 1	PNOD Replicate 2	PNOD Replicate 3
	B3-01-2.0-082318	Farallon	8/23/2018	2.0	0.0032	1.2	0.033	0.0052	< 0.0010	33.5	34.9	33.2	32.4
B3-01	B3-01-5.0-082318	Farallon	8/23/2018	5.0						7.5	7.9	7.1	7.4
D 3-01	B3-01-9.0-082318	Farallon	8/23/2018	9.0	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011				
	B3-01-11.0-082318	Farallon	8/23/2018	11.0	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011				
B3-02	B3-02-2.0-082318	Farallon	8/23/2018	2.0	0.0063	2.4	0.0048	< 0.0010	< 0.0010				
B3-02	B3-02-6.0-082318	Farallon	8/23/2018	6.0	< 0.00088	0.016	< 0.00088	< 0.00088	< 0.00088				
	B3-03-2.0-082318	Farallon	8/23/2018	2.0	< 0.0010	0.082	< 0.0010	< 0.0010	< 0.0010				
B3-03	B3-03-8.0-082318	Farallon	8/23/2018	8.0	< 0.0010	0.0017	< 0.0010	< 0.0010	< 0.0010				
B3-03	B30-03-8.0-082318	Farallon	8/23/2018	8.0	< 0.0011	0.0042	< 0.0011	< 0.0011	< 0.0011				
	B3-03-11.0-082318	Farallon	8/23/2018	11.0	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011				
	C5-01-1.0-082418	Farallon	8/24/2018	1.0	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012				
C5-01	C5-01-6.0-082418	Farallon	8/24/2018	6.0	0.0014	0.0012	< 0.0010	< 0.0010	< 0.0010				
	C5-01-11.0-082418	Farallon	8/24/2018	11.0	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010				
C5-02	C5-02-1.0-082418	Farallon	8/24/2018	1.0	0.012	0.024	< 0.0010	< 0.0010	< 0.0010	19.0	19.4	19.8	17.9
C5-03	C5-03-1.0-082418	Farallon	8/24/2018	1.0	0.0028	0.0056	< 0.00097	< 0.00097	< 0.00097				
C3-03	C50-03-1.0-082418	Farallon	8/24/2018	1.0	0.0039	0.0081	< 0.0011	< 0.0011	< 0.0011				
	D4-01-1.0-082318	Farallon	8/23/2018	1.0	< 0.0010	0.0023	< 0.0010	< 0.0010	< 0.0010				
D4-01	D4-01-5.0-082318	Farallon	8/23/2018	5.0	0.0023	0.0056	< 0.00087	< 0.00087	< 0.00087				
	D4-01-10.0-082318	Farallon	8/23/2018	10.0	< 0.00095	< 0.00095	< 0.00095	< 0.00095	< 0.00095				
	D4-02-1.0-082418	Farallon	8/24/2018	1.0	0.0017	0.0038	< 0.00093	< 0.00093	< 0.00093				
D4-02	D4-02-6.5-082418	Farallon	8/24/2018	6.5	0.0090	0.012	< 0.00085	< 0.00085	< 0.00085	2.7	2.8	2.7	2.6
	D4-02-11.0-082418	Farallon	8/24/2018	11.0	0.0012	0.0026	< 0.0011	< 0.0011	< 0.0011				
	D4-03-1.0-082418	Farallon	8/24/2018	1.0	0.0031	0.011	< 0.00093	< 0.00093	< 0.00093	17.5	18.3	18.3	15.9
D4-03	D4-03-7.0-082418	Farallon	8/24/2018	7.0	0.0054	0.011	< 0.00093	< 0.00093	< 0.00093				
	D4-03-11.0-082418	Farallon	8/24/2018	11.0	0.0079	0.0094	< 0.0010	< 0.0010	< 0.0010				
	E5-01-1.0-082318	Farallon	8/23/2018	1.0	0.0044	0.0071	< 0.0010	< 0.0010	< 0.0010	21.5	20.1	21.6	22.8
E5-01	E5-01-5.0-082318	Farallon	8/23/2018	5.0	0.078	0.076	0.0030	< 0.00093	< 0.00093	3.2	3.1	3.5	3.1
	E5-01-11.0-082318	Farallon	8/23/2018	11.0	0.017	0.0074	< 0.0017	< 0.0017	< 0.0017				
Preliminary Clea	eliminary Cleanup Levels for Soil				$0.08^4/0.044^5$	$0.03^4/0.006^5$	160 ⁶	0.594/65	0.002 ⁴ /0.001 ⁵	NE	NE	NE	NE

Table 6

Stage 1 Round 1 Performance Soil Analytical Results

West of 4th Group Site Capital Industries, Inc. Seattle, Washington Farallon PN: 457-008

						Analytical R	esults (milligrams)	per kilogram) ²		PNOD A	nalytical Resul	ts (grams per l	kilogram) ³
Sample Location	Sample Identification	Sampled By	Sample Date	Sample Depth (feet) ¹	PCE	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride	PNOD Average	PNOD Replicate 1	PNOD Replicate 2	PNOD Replicate 3
	E5-02-1.0-082318	Farallon	8/23/2018	1.0	0.0043	0.0037	< 0.00092	< 0.00092	< 0.00092				
E5-02	E5-02-5.0-082318	Farallon	8/23/2018	5.0	0.034	0.011	< 0.00096	< 0.00096	< 0.00096				
E3-02	E5-02-14.0-082318	Farallon	8/23/2018	14.0	< 0.0011	0.0012	< 0.0011	< 0.0011	< 0.0011				
	E5-02-20.0-082318	Farallon	8/23/2018	20.0	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010				
	E5-03-3.0-082318	Farallon	8/23/2018	3.0	0.049	0.047	< 0.0011	< 0.0011	< 0.0011	3.7	3.7	3.5	3.7
E5-03	E5-03-9.0-082318	Farallon	8/23/2018	9.0	0.15	0.042	< 0.0010	< 0.0010	< 0.0010				
E3-03	E5-03-14.0-082318	Farallon	8/23/2018	14.0	0.0082	0.0047	< 0.0011	< 0.0011	< 0.0011				
	E5-03-19.0-082318	Farallon	8/23/2018	19.0	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011				
	F5-01-2.0-082218	Farallon	8/22/2018	2.0	0.16	0.11	< 0.0010	< 0.0010	< 0.0010				
F5-01	F5-01-6.5-082218	Farallon	8/22/2018	6.5	0.0015	< 0.00097	< 0.00097	< 0.00097	< 0.00097				
	F5-01-10.0-082218	Farallon	8/22/2018	10.0	0.0078	0.0023	< 0.0011	< 0.0011	< 0.0011	1.5	1.5	1.8	1.1
F5-02	F5-02-2.0-082218	Farallon	8/22/2018	2.0	0.04	0.022	< 0.0012	< 0.0012	< 0.0012	3.0	2.8	2.4	3.7
F 3-02	F5-02-8.5-082218	Farallon	8/22/2018	8.5	0.0073	0.0019	< 0.0010	< 0.0010	< 0.0010				
	F5-03-1.0-082218	Farallon	8/22/2018	1.0	0.0031	0.0047	< 0.00096	< 0.00096	< 0.00096				
F5-03	F5-03-5.0-082218	Farallon	8/22/2018	5.0	0.042	0.045	< 0.0010	< 0.0010	< 0.0010				
	F5-03-10.0-082218	Farallon	8/22/2018	10.0	0.014	0.0053	< 0.00087	< 0.00087	< 0.00087				
Preliminary Cle	anup Levels for Soil				$0.08^4/0.044^5$	$0.03^4/0.006^5$	160 ⁶	0.594/65	0.0024/0.0015	NE	NE	NE	NE

NOTES:

Results in **bold** denote reporting limits that exceed the most conservative preliminary cleanup level protective of indoor air.

⁷Information obtained from the Remediation Report on the subject RemOx® S ISCO Reagent Permanganate Natural Oxidant Demand dated September 4, 2018 anfrom T. Lizer and T. Colgan of Carus Remediation Technologies to Jen Moore of Farallon, L.L.C.

ISCO = in situ chemical oxidation

PCE = tetrachloroethene

PNOD = permanganate natural oxidant demand

TCE = trichloroethene

Correlation of PNOD Results⁷

Correlation of Front Results								
PNOD (grams per kilogram)	Rank	Comment						
<10	Low	ISCO with MnO ₄ ⁻ is recommended. Soil contribution to PNOD is low.						
10-20	Moderate	ISCO with MnO ₄ is recommended. Soil contribution to PNOD is moderate. Economics should be considered.						
>20	High	ISCO with MnO ₄ is technically feasible. Other technologies may provid lower cost alternatives.						

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

[—] denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8260B.

³Analyzed by ASTM D7262-10 Test Method A. PNOD samples analyzed three times (Replicates 1 through 3) and averaged.

⁴Soil cleanup levels for protection of air quality. These are preliminary values only. Values calculated using Model Toxics Control Act (MTCA) Equation 747-1 where the potable Method B groundwater cleanup level was used as C_w. Concentrations of hazardous substances in soil that meet the potable groundwater protection standard currently are considered sufficiently protective of the air pathway for unrestricted and industrial land uses.

⁵Soil cleanup levels for protection of surface water quality. These are preliminary values only. Values are calculated using MTCA Equation 747-1 where the groundwater cleanup level protective of surface water in this table was used as C_w.

⁶Cleanup level is based on standard MTCA Method B (unrestricted land use) values from the Cleanup and Risk Calculation tables.

<https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx>

Table 7 Stage 1 Round 1 and Corresponding Round 2 Performance Soil Analytical Results

West of 4th Group Site Capital Industries, Inc. Seattle, Washington Farallon PN: 457-008

						Analytical R	esults (milligrams)	per kilogram) ²		PNOD A	nalytical Resul	ts (grams per l	kilogram) ³
Sample Location	Sample Identification	Sampled By	Sample Date	Sample Depth (feet) ¹	PCE	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride	PNOD Average	PNOD Replicate 1	PNOD Replicate 2	PNOD Replicate 3
B3-02	B3-02-2.0-082318	Farallon	8/23/2018	2.0	0.0063	2.4	0.0048	< 0.0010	< 0.0010				
D3-02	B3-02-6.0-082318	Farallon	8/23/2018	6.0	< 0.00088	0.016	< 0.00088	< 0.00088	< 0.00088				
B3-04	B3-04-4.0-091918	Farallon	9/19/2018	4.0	0.21	13	0.0012	< 0.0011	< 0.0011				
D3 01	B3-04-10.5-091918	Farallon	9/19/2018	10.5	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010				
C5-02	C5-02-1.0-082418	Farallon	8/24/2018	1.0	0.012	0.024	< 0.0010	< 0.0010	< 0.0010	19.0	19.4	19.8	17.9
	C5-04-2.5-092018	Farallon	9/20/2018	2.5	0.099	0.15	< 0.00091	< 0.00091	< 0.00091				
C5-04	C5-04-7.5-092018	Farallon	9/20/2018	7.5	0.0025	0.0041	< 0.00099	< 0.00099	< 0.00099				
	C5-04-10.5-092018	Farallon	9/20/2018	10.5	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010				
G5.02	C5-03-1.0-082418	Farallon	8/24/2018	1.0	0.0028	0.0056	< 0.00097	< 0.00097	< 0.00097				
C5-03	C50-03-1.0-082418	Farallon	8/24/2018	1.0	0.0039	0.0081	< 0.0011	< 0.0011	< 0.0011				
	C5-05-4.0-092018	Farallon	9/20/2018	4.0	0.0022	0.0013	0.0012	< 0.00097	< 0.00097				
C5-05	C5-05-6.5-092018	Farallon	9/20/2018	6.5	0.0019	0.0013	< 0.00098	< 0.00098	< 0.00098				
	C5-05-10.5-092018	Farallon	9/20/2018	10.5	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011				
	D4-03-1.0-082418	Farallon	8/24/2018	1.0	0.0031	0.011	< 0.00093	< 0.00093	< 0.00093	17.5	18.3	18.3	15.9
D4-03	D4-03-7.0-082418	Farallon	8/24/2018	7.0	0.0054	0.011	< 0.00093	< 0.00093	< 0.00093				
	D4-03-11.0-082418	Farallon	8/24/2018	11.0	0.0079	0.0094	< 0.0010	< 0.0010	< 0.0010				
D4-04	D4-04-2.5-092018	Farallon	9/20/2018	2.5	< 0.0011	0.0019	< 0.0011	< 0.0011	< 0.0011				
	E5-02-1.0-082318	Farallon	8/23/2018	1.0	0.0043	0.0037	< 0.00092	< 0.00092	< 0.00092				
E5-02	E5-02-5.0-082318	Farallon	8/23/2018	5.0	0.034	0.011	< 0.00096	< 0.00096	< 0.00096				
E3-02	E5-02-14.0-082318	Farallon	8/23/2018	14.0	< 0.0011	0.0012	< 0.0011	< 0.0011	< 0.0011				
	E5-02-20.0-082318	Farallon	8/23/2018	20.0	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010				
E5-05	E5-05-8.0-091918	Farallon	9/19/2018	8.0	0.0019	< 0.0012	< 0.0012	< 0.0012	< 0.0012				
	E5-03-3.0-082318	Farallon	8/23/2018	3.0	0.049	0.047	< 0.0011	< 0.0011	< 0.0011	3.7	3.7	3.5	3.7
E5-03	E5-03-9.0-082318	Farallon	8/23/2018	9.0	0.15	0.042	< 0.0010	< 0.0010 < 0.0010 < 0.					
E3-03	E5-03-14.0-082318	Farallon	8/23/2018	14.0	0.0082	0.0047	< 0.0011	< 0.0011 < 0.00					
	E5-03-19.0-082318	Farallon	8/23/2018	19.0	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011				
E5-06	E5-06-5.5-091918	Farallon	9/19/2018	5.5	0.043	0.064	0.0015	< 0.0011	< 0.0011				
Preliminary Cle	anup Levels for Soil				$0.08^4/0.044^5$	$0.03^4/0.006^5$	160 ⁶	$0.59^4/6^5$	$0.002^4/0.001^5$	NE	NE	NE	NE

Table 7

Stage 1 Round 1 and Corresponding Round 2 Performance Soil Analytical Results

West of 4th Group Site Capital Industries, Inc. Seattle, Washington Farallon PN: 457-008

						Analytical R	esults (milligrams _l	PNOD Analytical Results (grams per kilogram) ³					
Sample Location	Sample Identification	Sampled By	Sample Date	Sample Depth (feet) ¹	PCE	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride	PNOD Average	PNOD Replicate 1	PNOD Replicate 2	PNOD Replicate 3
	F5-01-2.0-082218	Farallon	8/22/2018	2.0	0.16	0.11	< 0.0010	< 0.0010	< 0.0010				
F5-01	F5-01-6.5-082218	Farallon	8/22/2018	6.5	0.0015	< 0.00097	< 0.00097	< 0.00097	< 0.00097				
	F5-01-10.0-082218	Farallon	8/22/2018	10.0	0.0078	0.0023	< 0.0011	< 0.0011	< 0.0011	1.5	1.5	1.8	1.1
F5-04	F5-04-2.0-091918	Farallon	9/19/2018	2.0	0.16	0.13	< 0.0010	< 0.0010	< 0.0010				
173-04	F5-04-7.0-091918	Farallon	9/19/2018	7.0	0.021	0.0080	< 0.00090	< 0.00090	< 0.00090				
F5-02	F5-02-2.0-082218	Farallon	8/22/2018	2.0	0.04	0.022	< 0.0012	< 0.0012	< 0.0012	3.0	2.8	2.4	3.7
13-02	F5-02-8.5-082218	Farallon	8/22/2018	8.5	0.0073	0.0019	< 0.0010	< 0.0010	< 0.0010				
F5-05	F5-05-7.0-091918	Farallon	9/19/2018	7.0	0.0014	< 0.0013	< 0.0013	< 0.0013	< 0.0013				
Preliminary Cle	reliminary Cleanup Levels for Soil					$0.03^4/0.006^5$	160 ⁶	$0.59^4/6^5$	$0.002^4/0.001^5$	NE	NE	NE	NE

NOTES:

Results in **bold** denote reporting limits that exceed the most conservative preliminary cleanup level protective of indoor air.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

Black text represents Round 1 performance soil results from intervals where oxidant was not observed during Round 1.

Orange text represents Round 2 performance soil results from intervals where oxidant was observed during Round 1.

⁴Soil cleanup levels for protection of air quality. These are preliminary values only. Values calculated using Model Toxics Control Act (MTCA) Equation 747-1 where the potable Method B groundwater cleanup level was used as C_w. Concentrations of hazardous substances in soil that meet the potable groundwater protection standard currently are considered sufficiently protective of the air pathway for unrestricted and industrial land uses.

⁵Soil cleanup levels for protection of surface water quality. These are preliminary values only. Values are calculated using MTCA Equation 747-1 where the groundwater cleanup level protective of surface water in this table was used as C_w.

⁷Information obtained from the Remediation Report on the subject RemOx® S ISCO Reagent Permanganate Natural Oxidant Demand dated September 4, 2018 anfrom T. Lizer and T. Colgan of Carus Remediation Technologies to Jen Moore of Farallon, L.L.C.

ISCO = in situ chemical oxidation

PCE = tetrachloroethene

PNOD = permanganate natural oxidant demand

TCE = trichloroethene

Correlation of PNOD Results 7

PNOD (grams per kilogram)	Rank	Comment
<10	Low	ISCO with MnO ₄ is recommended. Soil contribution to PNOD is low.
10-20	Moderate	ISCO with MnO ₄ is recommended. Soil contribution to PNOD is moderate. Economics should be considered.
>20	High	ISCO with MnO ₄ is technically feasible. Other technologies may provide lower cost alternatives.

[—] denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8260B.

³Analyzed by ASTM D7262-10 Test Method A. PNOD samples analyzed three times (Replicates 1 through 3) and averaged.

⁶Cleanup level is based on standard MTCA Method B (unrestricted land use) values from the Cleanup and Risk Calculation tables.

https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

Table 8 CVOC Soil Analytical Results Northwestern Portion of Plant 4

West of 4th Group Site Capital Industries, Inc. Seattle, Washington

Farallon PN: 457-008

					Analytical Results (milligrams per kilogram) ²							
Sample Location	Sample Identification	Sampled By	Sample Date	Sample Depth (feet) ¹	РСЕ	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride			
	P4-15-1.0-092018	Farallon	9/20/2018	1.0	< 0.00085	0.0015	< 0.00085	< 0.00085	< 0.00085			
P4-15	P4-15-2.0-092018	Farallon	9/20/2018	2.0	< 0.00095	0.0026	< 0.00095	< 0.00095	< 0.00095			
P4-13	P4-15-3.0-092018	Farallon	9/20/2018	3.0	.0 < 0.0010 0.0052 < 0.0010		< 0.0010	< 0.0010	< 0.0010			
	P4-15-5.0-092018	Farallon	9/20/2018	5.0	0.0010	0.0099	< 0.0010	< 0.0010	< 0.0010			
	P4-16-1.0-091918	Farallon	9/19/2018	1.0	< 0.0010	0.032	< 0.0010	< 0.0010	< 0.0010			
P4-16	P4-16-2.0-091918	Farallon	9/19/2018	2.0	< 0.00099	0.022	< 0.00099	< 0.00099	< 0.00099			
	P4-16-3.0-091918	Farallon	9/19/2018	3.0	< 0.00098	0.011	0.0016	< 0.00098	< 0.00098			
	P4-17-1.0-091918	Farallon	9/19/2018	1.0	< 0.0012 0.0076 < 0.00		< 0.0012	< 0.0012	< 0.0012			
P4-17	P4-17-2.0-091918	Farallon	9/19/2018	2.0	< 0.00093	0.0020	< 0.00093	< 0.00093	< 0.00093			
	P4-17-3.0-091918	Farallon	9/19/2018	3.0	< 0.00090	< 0.00090	< 0.00090	< 0.00090	< 0.00090			
	P4-18-1.0-091918	Farallon	9/19/2018	1.0	< 0.00091	0.0058	< 0.00091	< 0.00091	< 0.00091			
P4-18	P4-18-2.0-091918	Farallon	9/19/2018	2.0	< 0.0010	0.017	< 0.0010	< 0.0010	< 0.0010			
	P4-18-3.0-091918	Farallon	9/19/2018	3.0	< 0.00093	0.0020	< 0.00093	< 0.00093	< 0.00093			
Preliminary Cl	eanup Levels for Soil				$0.08^3/0.044^4$	$0.03^3/0.006^4$	160 ⁵	$0.59^3/6^4$	0.002 ³ /0.001 ⁴			

NOTES

Results in **bold** denote reporting limits that exceed the most conservative preliminary cleanup level protective of indoor air.

CVOC = chlorinated volatile organic compound

PCE = tetrachloroethene

TCE = trichloroethene

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8260B.

 $^{^{3}}$ Soil cleanup levels for protection of air quality. These are preliminary values only. Values calculated using Model Toxics Control Act (MTCA) Equation 747-1 where the potable Method B groundwater cleanup level was used as C_w . Concentrations of hazardous substances in soil that meet the potable groundwater protection standard currently are considered sufficiently protective of the air pathway for unrestricted and industrial land uses.

 $^{^4}$ Soil cleanup levels for protection of surface water quality. These are preliminary values only. Values are calculated using MTCA Equation 747-1 where the groundwater cleanup level protective of surface water in this table was used as C_w .

⁵Cleanup level is based on standard MTCA Method B (unrestricted land use) values from the Cleanup and Risk Calculation tables. https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

APPENDIX A WASHINGTON STATE DEPARTMENT OF ECOLOGY UNDERGROUND INJECTION CONTROL AUTHORIZATION LETTER

FINAL CAPITAL INDUSTRIES PLANT 4 INTERIM ACTION – STAGE 1
IN-SITU CHEMICAL OXIDATION REPORT
West of 4th Group Site
5801 3rd Avenue South
Seattle, Washington

Farallon PN: 457-008

Underground Injection Control

View Friendly

Automatically Meet the Nonendangerment Standard For Class V wells that automatically meet the non endangerment standard in accordance with WAC 173-218-100.

Registration Status

Site Number: 34067

Authorization Status: Rule-Authorized

Comments:

Facility/Site Information

Facility Name: Capital Industries Inc Plant 4

Address: 5801 3rd Ave S

PO Box/Suite/Building:

City: Seattle

State: WA **ZIP:** 98108

Phone: 206-762-8585

County: King

Facility Site ID: 11598755

Contact Information

Well Owner **Property Owner**

> Name: Ron Taylor Name: Ron Taylor

Organization: Capital Industries Inc. Organization: Capital Industries

Inc.

Address: 5801 3rd Ave S Address: 5801 3rd Ave S

PO PO

Box/Suite/Building: Box/Suite/Building:

> City: Seattle City: Seattle

State: WA **ZIP:** 98108 State: WA **ZIP:** 98108

E-mail: rtaylor@capitalind.c rtaylor@capitalind.com

om

Phone: 206-762-8585 **Phone:** 206-762-8585

Technical Contact

Name: Jennifer Moore

Organization: Farallon Consulting LLC

Address: 975 5th Ave NW

PO Box:

City: Issaquah

State: WA **ZIP:** 98027 **E-mail:** jmoore@farallonconsulting.

com

Phone: 425-295-0800

Main Well Information

Well Name	UIC Well Type From Section C (1-12)	Construction Date	EPA Well Type	Status	Depth of UIC Well (ft.)	Latitude	Longitude
C3-C5,D3- D5, E3- E5,F3-F5	12	12/1/2018	5B6 - Aquifer remediation	Active	25	47.550540	122.330250
A3-A5, B2-B5, D2,E2	12	12/1/2108	5B6 - Aquifer remediation	Active	8	47.550650	122.330250

Main Well Information (continued)

Well Name	Permit Type	Permit ID	Permit Issuer
C3-C5,D3-D5, E3-E5,F3-F5	MTCA	AO DE 10402	Ecology
A3-A5, B2-B5, D2,E2	MTCA	AO DE 10402	Ecology

APPENDIX B OBSERVATION WELL DIAGRAMS AND BORING LOGS

FINAL CAPITAL INDUSTRIES PLANT 4 INTERIM ACTION – STAGE 1
IN-SITU CHEMICAL OXIDATION REPORT
West of 4th Group Site
5801 3rd Avenue South
Seattle, Washington

Farallon PN: 457-008

Page 1 of 1

Capital Industries, Inc. Client: Project: Capital Industries, Inc.

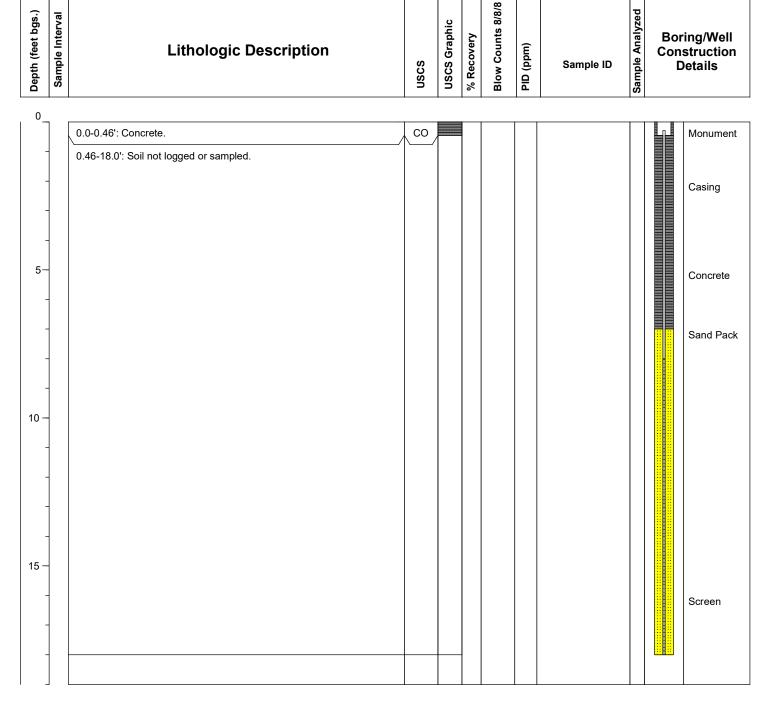
Location: Seattle, WA

Farallon PN: 457-008

Logged By: Greg Peters

Date/Time Started: 6/16/2018@ 1100

Date/Time Completed: 6/16/2018@ 1144 Equipment: GeoProbe **Drilling Company:** Holocene


Keven Doyle **Drilling Foreman: Drilling Method:** Direct Push

Sampler Type: NA

NA Drive Hammer (lbs.): Depth of Water ATD (ft bgs): NA Total Boring Depth (ft bgs): 18.0

Total Well Depth (ft bgs): 18.0

> Boring/Well Construction

Monument Type: Flush Casing Diameter (inches): 1.0 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 8.0-18.0

Well Construction Information Filter Pack: 12/20 Sand Surface Seal: Concrete Annular Seal: Concrete **Boring Abandonment:** NA

Ground Surface Elevation (ft): 17.98 Top of Casing Elevation (ft): 17.77 Surveyed Location: X: 1270799.83 Y: 204469.09

Page 1 of 1

Client: Capital Industries, Inc. **Project:** Capital Industries, Inc.

Location: Seattle, WA

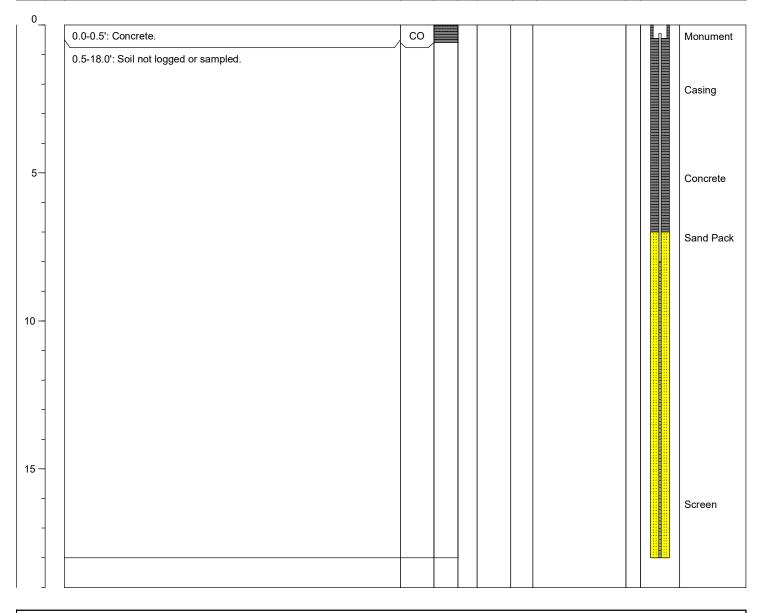
Farallon PN: 457-008

Logged By: Greg Peters

Date/Time Started: 6/20/2018@ 1534 **Date/Time Completed:** 6/20/2018@ 1610

Equipment: GeoProbe
Drilling Company: Holocene

Drilling Foreman: Keven Doyle
Drilling Method: Direct Push


Sampler Type: NA

Drive Hammer (lbs.): NA
Depth of Water ATD (ft bgs): NA
Total Boring Depth (ft bgs): 18.0

Total Well Depth (ft bgs): 18.0

Sample Interval Interval Sample Interval Sample Interval Blow Counts 8/8/8

Sample Analyzed Sample Sam

Monument Type: Flush
Casing Diameter (inches): 1.0
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 8.0-18.0

Well Construction Information
Filter Pack: 12/20 Sand
Surface Seal: Concrete
Annular Seal: Concrete
Boring Abandonment: NA

Ground Surface Elevation (ft): 17.63
Top of Casing Elevation (ft): 17.20
Surveyed Location: X:1270771.16

Y: 204451.06

Page 1 of 1

Capital Industries, Inc. Client: Project: Capital Industries, Inc.

Location: Seattle, WA

Farallon PN: 457-008

Logged By: Greg Peters

Date/Time Started: **Date/Time Completed:**

6/16/2018@ 1030

6/16/2018@ 0828 Sampler Type: NA Drive Hammer (lbs.):

NA

Equipment: Drilling Company:

Drilling Foreman:

Drilling Method:

GeoProbe Holocene

Keven Doyle

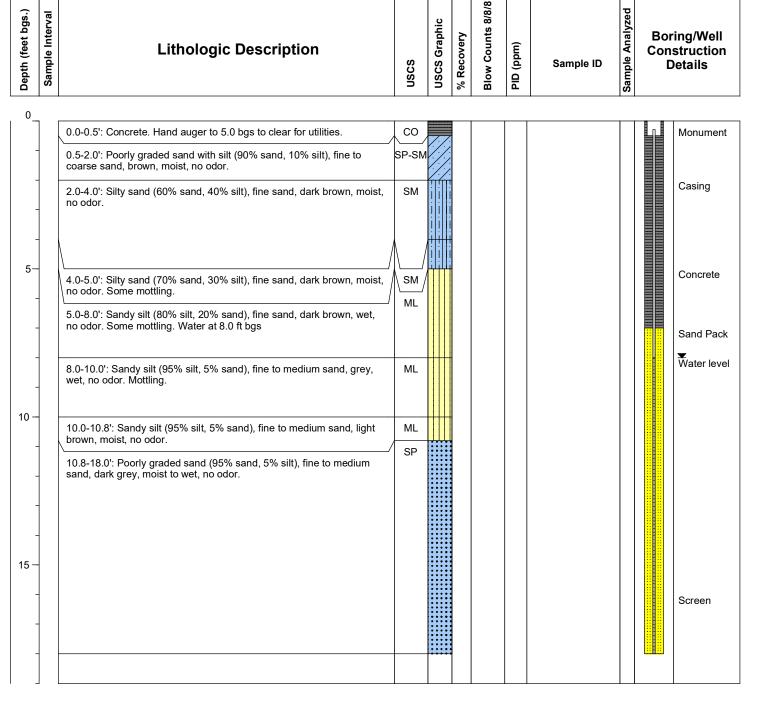
Direct Push

Depth of Water ATD (ft bgs): 8.0 Total Boring Depth (ft bgs):

Total Well Depth (ft bgs):

18.0 18.0

Depth (feet bgs.) Sample Interval


Lithologic Description

USCS Graphic Recovery

(mdd) 吕

Sample Analyzed Sample ID

Boring/Well Construction **Details**

Monument Type: Flush 1.0 Casing Diameter (inches): Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 8.0-18.0

Well Construction Information Filter Pack: 12/20 Sand Concrete

Surface Seal: Annular Seal: Concrete **Boring Abandonment:**

Ground Surface Elevation (ft): 17 96 Top of Casing Elevation (ft): 17.70 Surveyed Location: X: 1270824.09

Y: 204448.78

Page 1 of 1

Capital Industries, Inc. Client: Project: Capital Industries, Inc.

Location: Seattle, WA

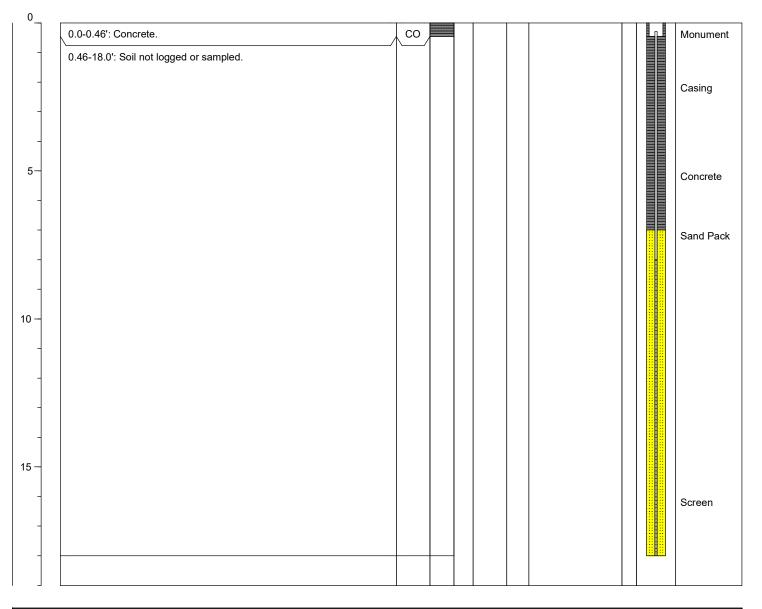
Farallon PN: 457-008

Logged By: Greg Peters

Date/Time Started: 6/16/2018@ 1315 Date/Time Completed:

6/16/2018@ 1450 Equipment: GeoProbe **Drilling Company:** Holocene

Keven Doyle **Drilling Foreman:**


Drilling Method: Direct Push Sampler Type: NA

NA Drive Hammer (lbs.):

Depth of Water ATD (ft bgs): NA Total Boring Depth (ft bgs): 18.0

Total Well Depth (ft bgs): 18.0

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Boring/Well % Recovery (mdd) **Lithologic Description** Construction Sample ID **Details** 8

Monument Type: Flush Casing Diameter (inches): 1.0 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 8.0-18.0

Well Construction Information Filter Pack: 12/20 Sand Surface Seal: Concrete Annular Seal: Concrete **Boring Abandonment:** NA

Ground Surface Elevation (ft): 17.81 Top of Casing Elevation (ft): 17.51 Surveyed Location: X: 1270759.15 Y: 204411.76

Page 1 of 1

Client: Capital Industries, Inc. **Project:** Capital Industries, Inc.

Location: Seattle, WA

Farallon PN: 457-008

Logged By: Greg Peters

Date/Time Started: 6/16/2018@ 1155 **Date/Time Completed:** 6/16/2018@ 1245

Equipment: Drilling Company:

Drilling Company:
Drilling Foreman:

GeoProbe

Holocene Keven Doyle Drive Hammer (lbs.):
Depth of Water ATD (ft bgs):
Total Boring Depth (ft bgs):

Sampler Type: NA

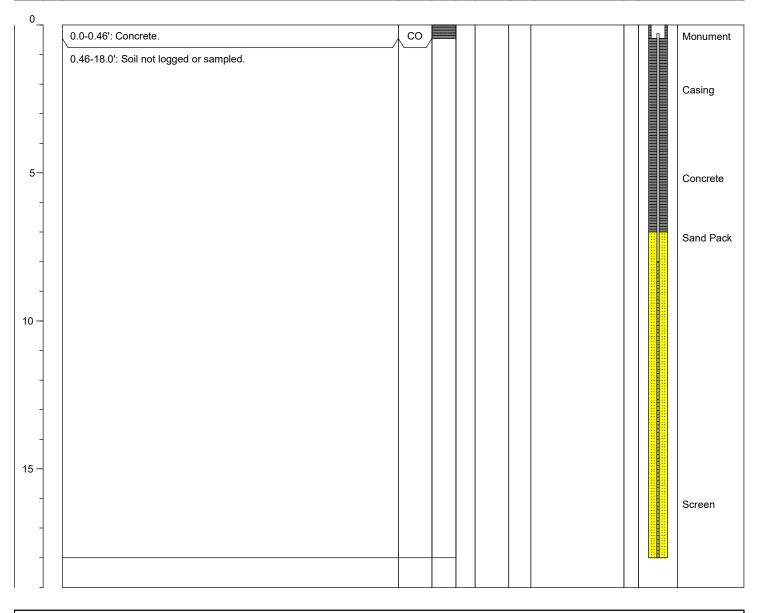
bs.): NA ATD (ft bgs): NA oth (ft bgs): 18.0

Total Well Depth (ft bgs): 18.0

Drilling Method: Direct Push

Sample Interval

Note to bas.)


Construction

Sample Analyzed Counts 8/8/8

Sample Analyzed Counts 8/8/8

Construction

Details

Monument Type: Flush
Casing Diameter (inches): 1.0
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 8.0-18.0

Well Construction Information
Filter Pack: 12/20 Sand
Surface Seal: Concrete
Annular Seal: Concrete
Boring Abandonment: NA

Ground Surface Elevation (ft): 17.93
Top of Casing Elevation (ft): 17.66
Surveyed Location: X:1270811.06

Y: 204411.27

Geoprobe 7720DT

Cascade Drilling

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

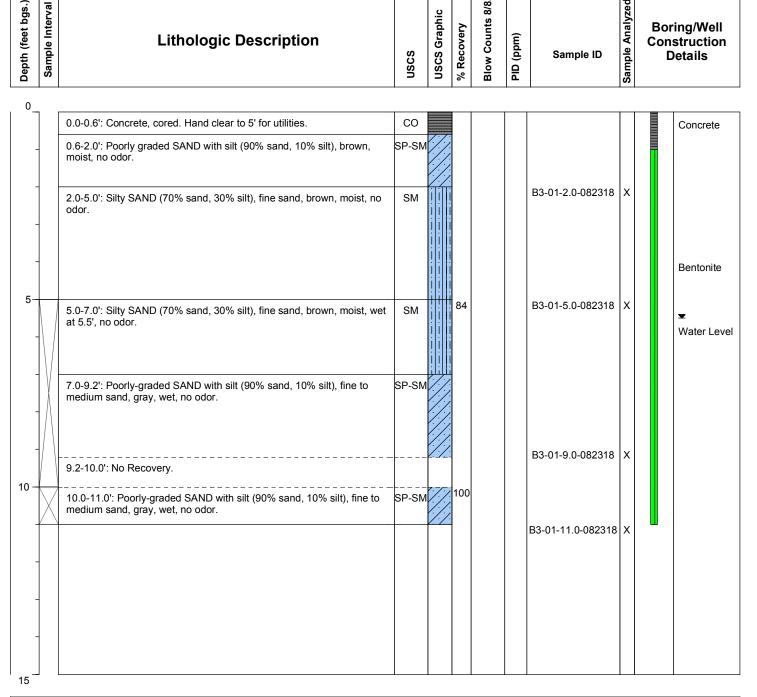
Farallon PN: 457-008

Logged By: R. Ostrom

Date/Time Started: 8/23/18 1640 8/23/18 2150 Date/Time Completed:

Equipment:

Drilling Company: Drilling Foreman:


Jeff Tucker

Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 5.5 Total Boring Depth (ft bgs): 11 Total Well Depth (ft bgs): NA

Direct Push **Drilling Method:**

Blow Counts 8/8/8 Sample Analyzed Sample Interval **USCS Graphic** Recovery Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: R. Ostrom

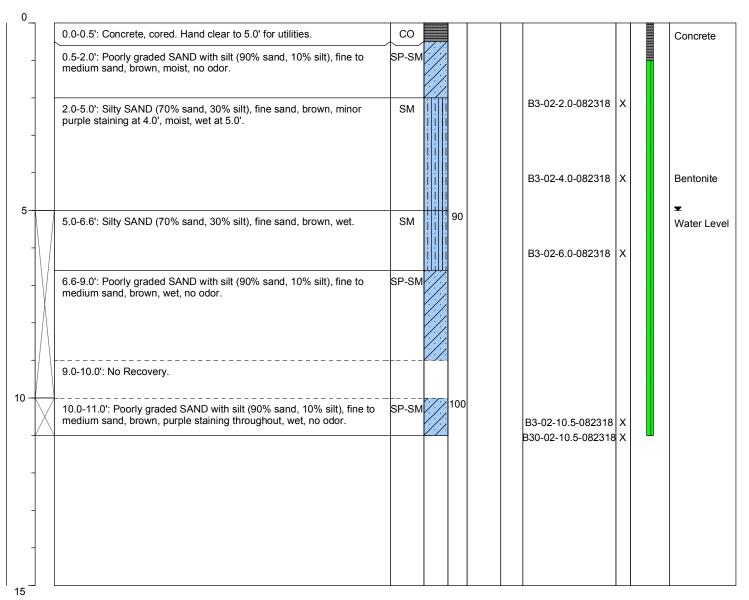
Date/Time Started: 8/23/18 2235 Date/Time Completed:

Equipment:

Drilling Company: Drilling Foreman:

Drilling Method:

8/23/18 1705


Geoprobe 7720DT Cascade Drilling

Jeff Tucker Direct Push Sampler Type: 5' Macrocore

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 5.0 Total Boring Depth (ft bgs): 11

Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** % Recovery Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Geoprobe 7720DT

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: R. Ostrom

Date/Time Started: 8/23/18 1725 8/23/18 2300 Date/Time Completed:

Equipment:

Drilling Company: Cascade Drilling Jeff Tucker **Drilling Foreman:**


Direct Push

Sampler Type: 5' Macrocore

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 5.0 Total Boring Depth (ft bgs): 11 Total Well Depth (ft bgs): NA

Drilling Method:

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Page 1 of 1

Client: Capital Industries
Project: Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

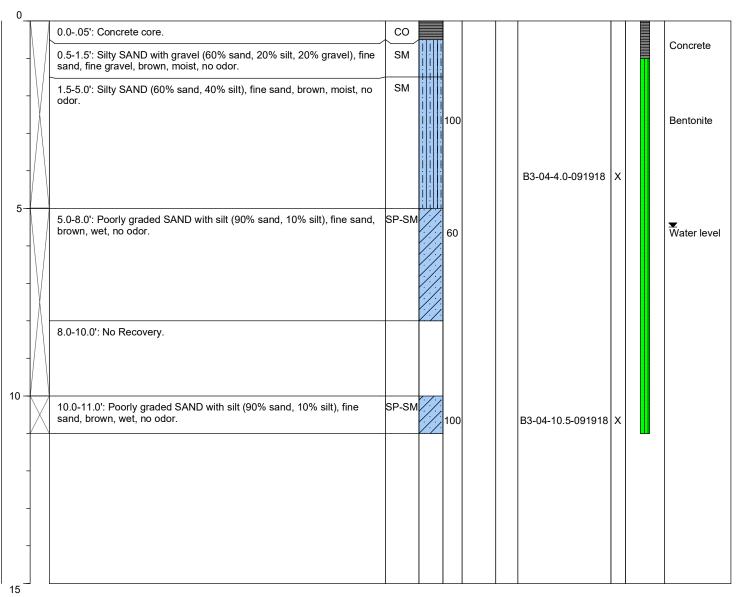
Logged By: Greg Peters

Date/Time Started: 9/19/18 **Date/Time Completed:** 09/19/

Equipment:
Drilling Company:

Drilling Foreman: Drilling Method:

9/19/18 @ 2000 09/19/18 @ 2100 Geoprobe 7720DT


Cascade Drilling
Tim Watson

Direct Push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 5.5
Total Boring Depth (ft bgs): 11.0

Total Well Depth (ft bgs): NA

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: R. Ostrom

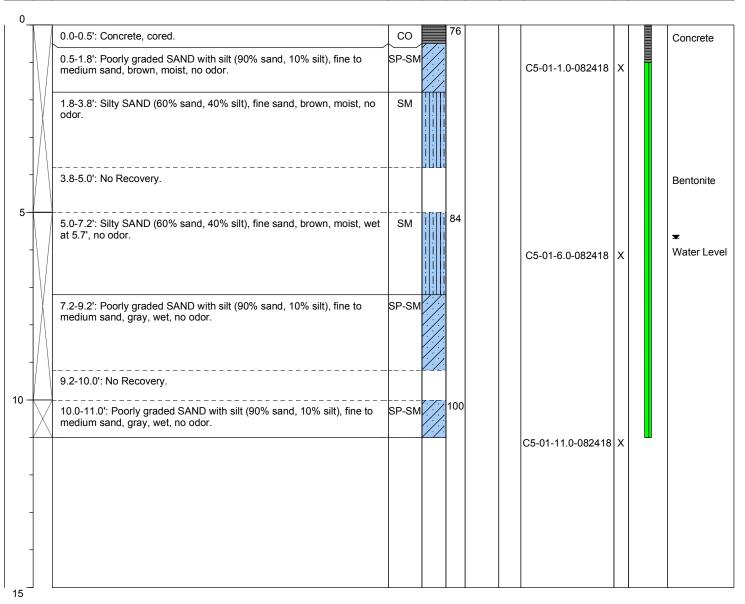
Date/Time Started: 8/24/18 1755 Date/Time Completed:

Equipment:

Drilling Company: Drilling Foreman:

Drilling Method:

8/24/18 1830


Geoprobe 7720DT Cascade Drilling

Jeff Tucker Direct Push Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 5.7 Total Boring Depth (ft bgs): 11

Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** % Recovery Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Page 1 of 1

NA

NA

Client: Capital Industries
Project: Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: R. Ostrom

Date/Time Started: 8/24/18
Date/Time Completed: 8/24/18

Equipment:

Drilling Company:
Drilling Foreman:

Drilling Method:

8/24/18 1755 8/24/18 1850

Geoprobe 7720DT Cascade Drilling

Jeff Tucker Direct Push Sampler Type: 5' Macrocore

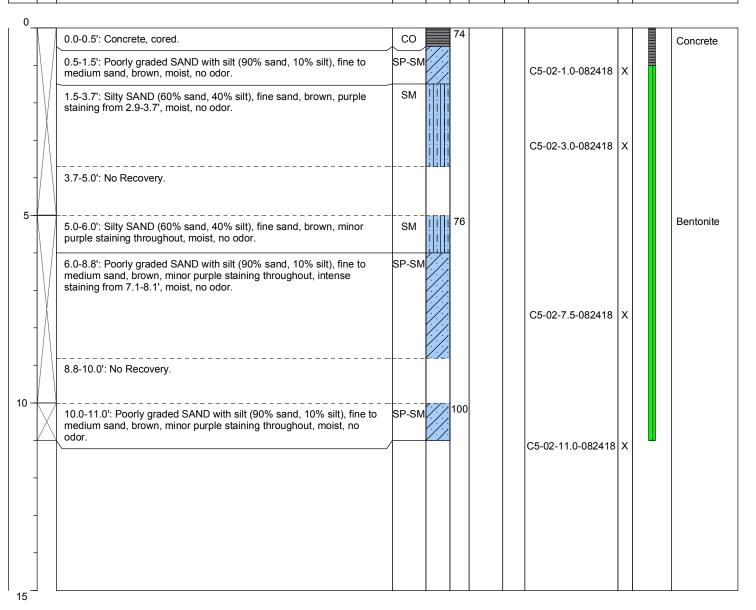
Drive Hammer (lbs.):AutoDepth of Water ATD (ft bgs):NETotal Boring Depth (ft bgs):11

Total Well Depth (ft bgs): NA

Sample Interval

Countraction

Blow Counts 8/8/8


Box Counts 8/8/8

Box Counts 8/8/8

Box Counts 8/8/8

Construction

Details

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: R. Ostrom

Date/Time Started: 8/24/18 1850 8/24/18 1915 Date/Time Completed:

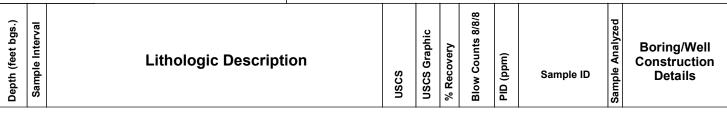
Equipment:

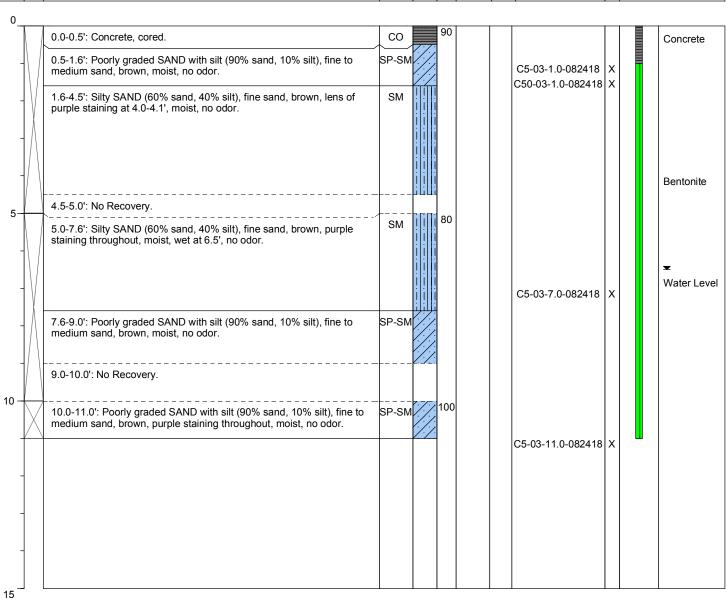
Drilling Company: Drilling Foreman:

Drilling Method:

Sampler Type: 5' Macrocore

Drive Hammer (lbs.):


Auto Depth of Water ATD (ft bgs): 6.5 Total Boring Depth (ft bgs): 11 Total Well Depth (ft bgs): NA


Geoprobe 7720DT

Cascade Drilling

Jeff Tucker

Direct Push

Page 1 of 1

Client: Capital Industries
Project: Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

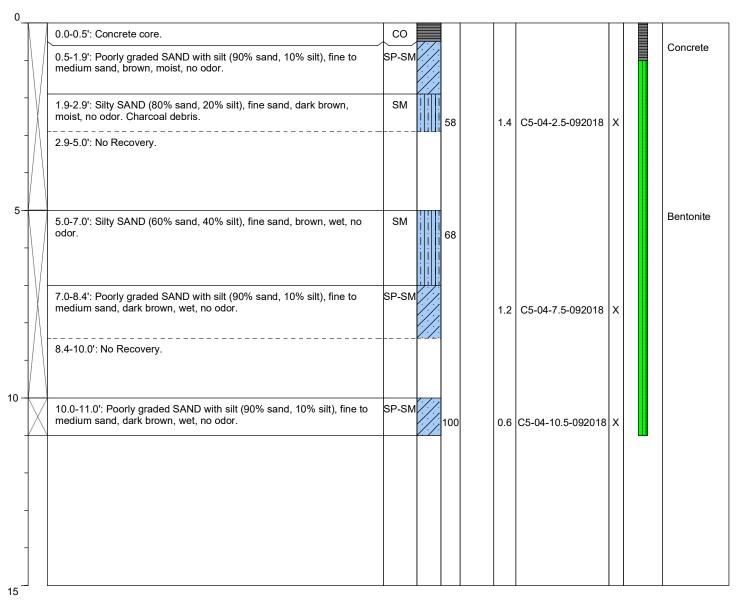
Logged By: Greg Peters

Date/Time Started: 9/20 Date/Time Completed: 09/2

Equipment:

Drilling Company:
Drilling Foreman:

Drilling Method:


9/20/18 @ 1845

09/20/18 @ 1855 Geoprobe 7720DT Cascade Drilling

Tim Watson Direct Push Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): NE
Total Boring Depth (ft bgs): 11.0

Total Well Depth (ft bgs): NA

Lithologic Description

Log of Boring: C5-05

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: Greg Peters

Date/Time Started: Date/Time Completed:

Equipment: Drilling Company:

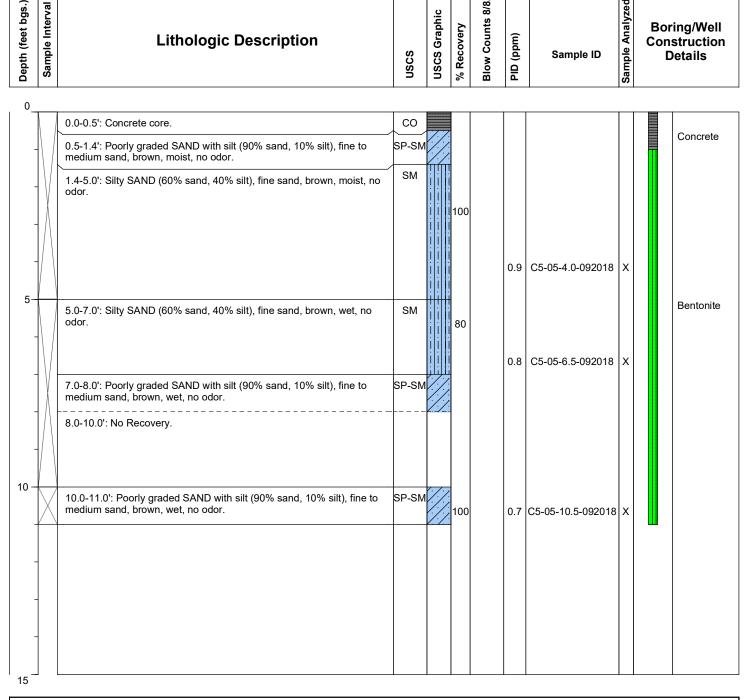
Drilling Foreman:

9/20/18 @ 1900 09/20/18 @ 1920 Geoprobe 7720DT

Cascade Drilling Tim Watson

Sampler Type: 5' Macrocore

Sample ID


Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): ΝE Total Boring Depth (ft bgs): 11.0 Total Well Depth (ft bgs): NA

Direct Push **Drilling Method:**

> Blow Counts 8/8/8 Sample Analyzed **USCS Graphic**

(mdd)

Boring/Well Construction **Details**

Log of Boring: D4-01

Geoprobe 7720DT

Cascade Drilling

Jeff Tucker

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

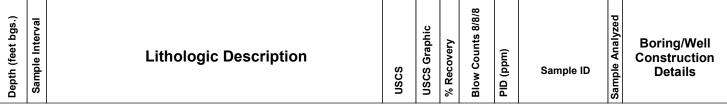
Location: Seattle, WA

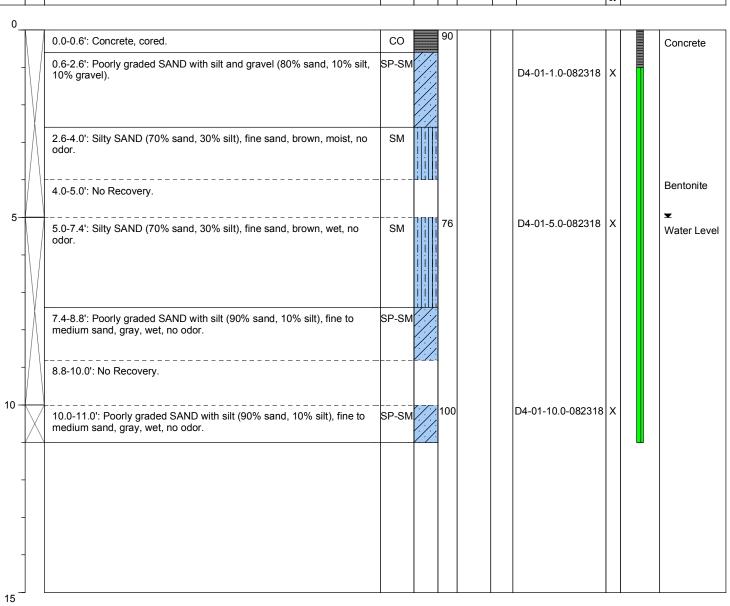
Farallon PN: 457-008

Logged By: R. Ostrom

Date/Time Started: 8/23/18 2315 8/23/18 2330 Date/Time Completed:

Equipment:


Drilling Company: Drilling Foreman:


Drilling Method:

Sampler Type: 5' Macrocore

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 5.0 Total Boring Depth (ft bgs): 11 Total Well Depth (ft bgs): NA

Direct Push

Monument Type: NA NA Casing Diameter (inches): Screen Slot Size (inches): NA Screened Interval (ft bgs): NA

Well Construction Information Filter Pack: NA Surface Seal: Concrete Annular Seal: NA **Boring Abandonment:** Bentonite

Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location: X:NA

Y: NA

NA

NA

Log of Boring: D4-02

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

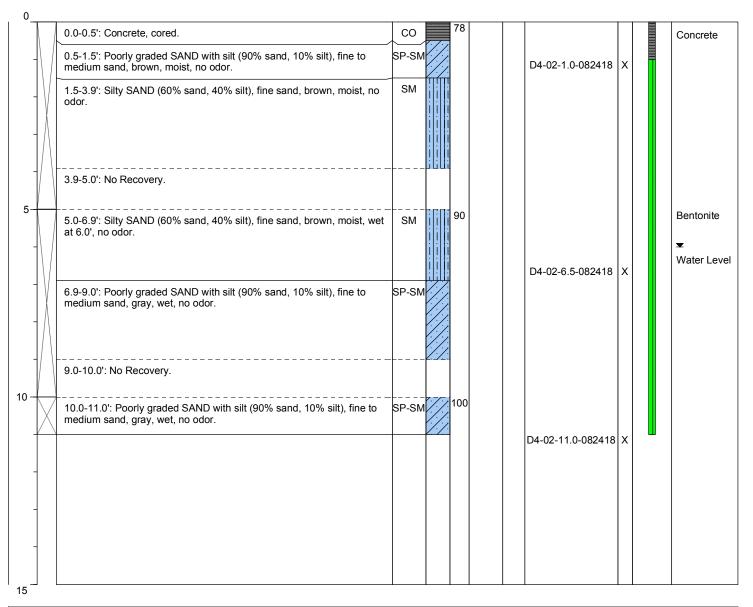
Logged By: R. Ostrom

Date/Time Started: Date/Time Completed:

Equipment: Drilling Company:

Drilling Foreman: Drilling Method:

8/24/18 1555 8/24/18 1625


Geoprobe 7720DT Cascade Drilling

Jeff Tucker Direct Push Sampler Type: 5' Macrocore

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 6.0 Total Boring Depth (ft bgs): 11

Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** % Recovery Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Lithologic Description

Log of Boring: D4-03

(mdd)

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: R. Ostrom

Date/Time Started: 8/24/18 1625 Date/Time Completed:

Equipment:

Drilling Company: Drilling Foreman:

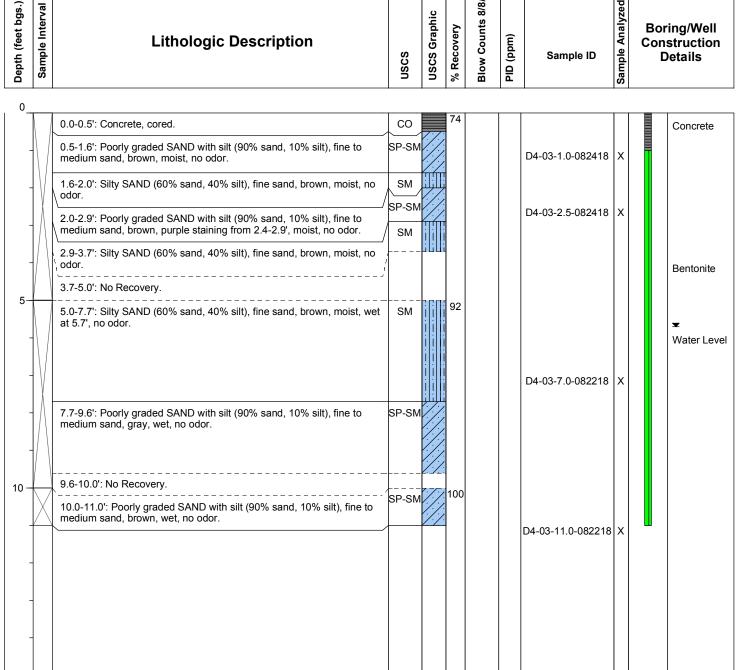
Drilling Method:

8/24/18 1710

Geoprobe 7720DT Cascade Drilling

Jeff Tucker Direct Push Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 5.7 Total Boring Depth (ft bgs): 11


Total Well Depth (ft bgs): NA

Sample ID

Boring/Well Construction **Details**

NA

NA

Log of Boring: D4-04

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

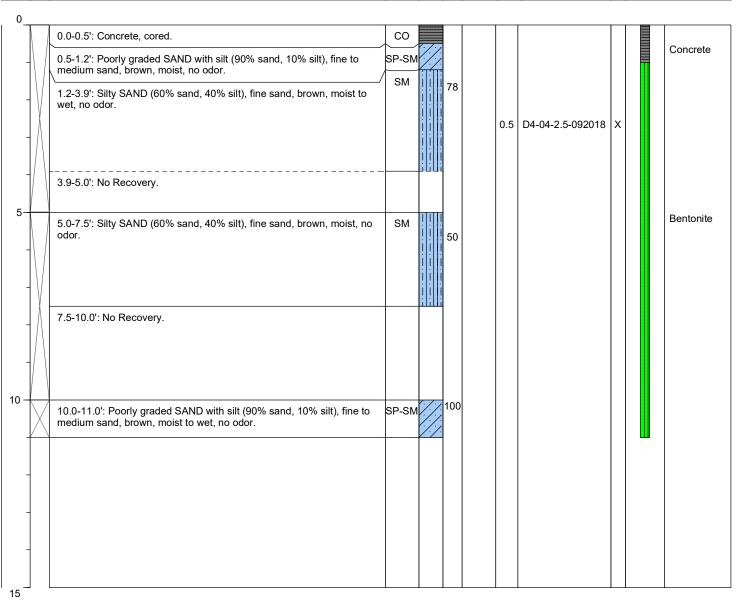
Logged By: Greg Peters

Date/Time Started: Date/Time Completed:

Equipment: Drilling Company:

Drilling Foreman: Drilling Method:

9/20/18 @ 1930 09/20/18 @ 1945


Geoprobe 7720DT Cascade Drilling Tim Watson

Direct Push

Sampler Type: 5' Macrocore

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): ΝE Total Boring Depth (ft bgs): 11.0 Total Well Depth (ft bgs): NA

Depth (feet bgs.)	Lithologic Descripti	sosn	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
-------------------	----------------------	------	--------------	------------	-------------------	-----------	-----------	-----------------	--

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Casing Diameter (inches): Top of Casing Elevation (ft): NA NA Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Geoprobe 7720DT

Cascade Drilling

Jeff Tucker

Recovery

(mdd)

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Date/Time Started: 8/23/18 1745 8/23/18 1830 Date/Time Completed:

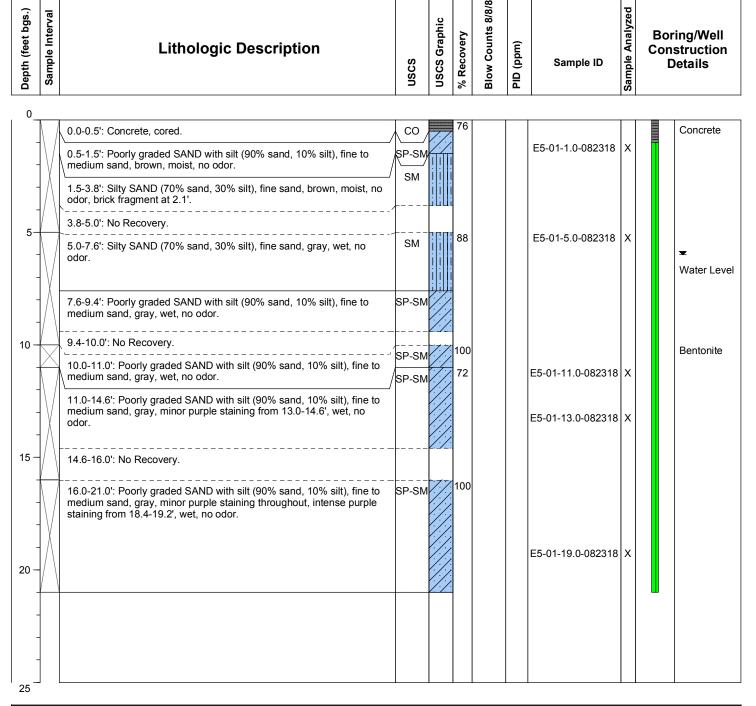
Equipment: Drilling Company:

Drilling Foreman:

Drilling Method:

Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 6.0


Total Boring Depth (ft bgs): 21 Total Well Depth (ft bgs): NA

Sample ID

Direct Push Logged By: R. Ostrom

Lithologic Description

Sample Analyzed **Boring/Well** Construction **Details**

Well Construction Information Monument Type: NA Filter Pack: NA NA Casing Diameter (inches): Surface Seal: Concrete Screen Slot Size (inches): NA Annular Seal: NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA Surveyed Location: X:NA

Y: NA

Geoprobe 7720DT

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

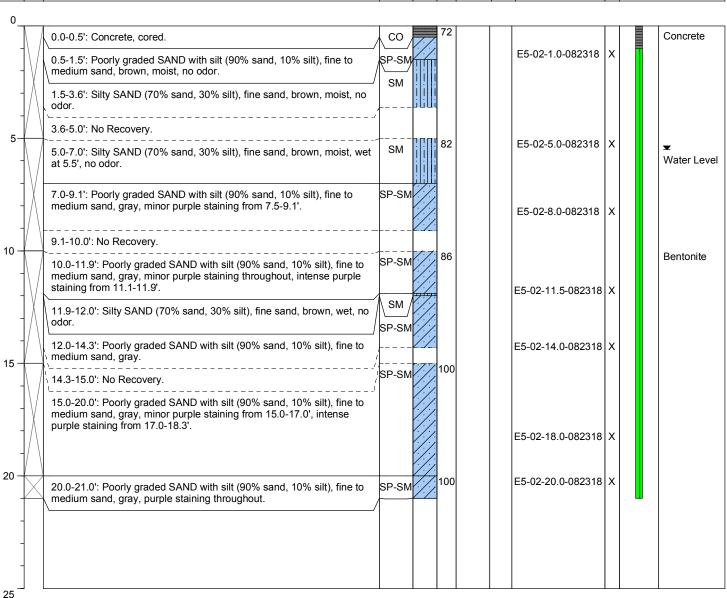
Farallon PN: 457-008

Logged By: R. Ostrom

Date/Time Started: 8/23/18 1830 8/23/18 1945 Date/Time Completed:

Equipment: **Drilling Company:**

Cascade Drilling **Drilling Foreman:** Jeff Tucker


Drilling Method: Direct Push Sampler Type: 5' Macrocore

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 5.5 Total Boring Depth (ft bgs): 21

Total Well Depth (ft bgs): NA

> Boring/Well Construction **Details**

Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** low Counts Recovery (mdd) **Lithologic Description** Sample ID 吕

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA NA Top of Casing Elevation (ft): Casing Diameter (inches): NA Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: R. Ostrom

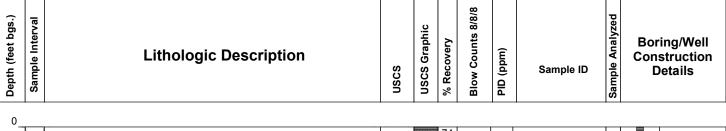
Date/Time Started: 8/23/18 1945 8/23/18 2035 Date/Time Completed:

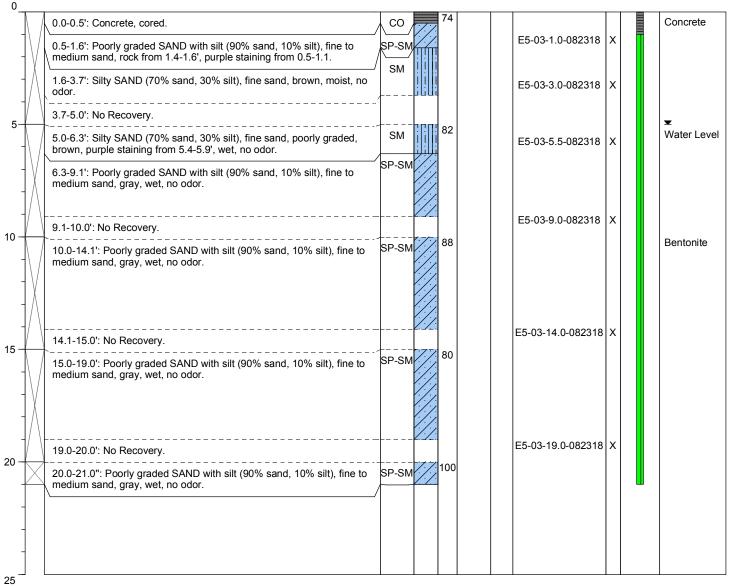
Equipment:

Drilling Company: Drilling Foreman:

Drilling Method:

Sampler Type: 5' Macrocore


Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 5.0 Total Boring Depth (ft bgs): 21 Total Well Depth (ft bgs): NA


Direct Push

Jeff Tucker

Geoprobe 7720DT

Cascade Drilling

Monument Type: NA NA Casing Diameter (inches): Screen Slot Size (inches): NA Screened Interval (ft bgs): NA

Well Construction Information NA Concrete

Filter Pack: Surface Seal: Annular Seal: NA **Boring Abandonment:** Bentonite Ground Surface Elevation (ft): Top of Casing Elevation (ft):

Surveyed Location: X:NA Y: NA NA NA

Geoprobe 7720DT

Cascade Drilling

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: Greg Peters

Date/Time Started: 9/19/18 @ 1835 09/19/18 @ 1907 Date/Time Completed:

Equipment: Drilling Company:

Drilling Foreman:


Tim Watson **Drilling Method: Direct Push**

Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 6.0 Total Boring Depth (ft bgs): 21.0 Total Well Depth (ft bgs):

NA

Depth (feet bgs.) Sample Analyzed Sample Interval **USCS Graphic** low Counts Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 1 of 1

NA

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

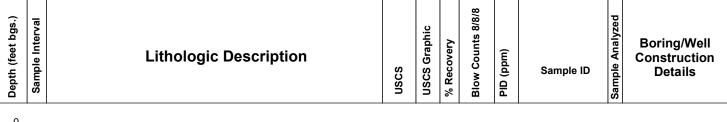
Logged By: Greg Peters

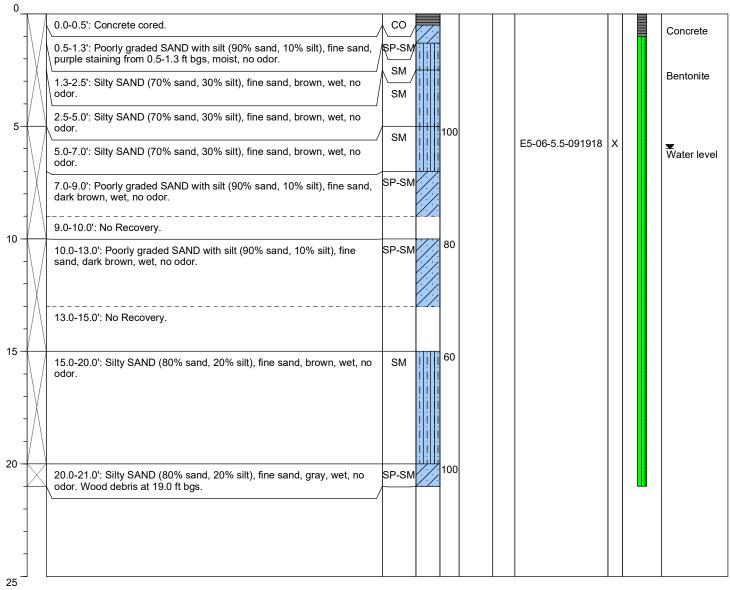
Date/Time Started: 9/19/18 @ 1740 09/19/18 @ 1830 Date/Time Completed:

Equipment:

Drilling Company: Drilling Foreman:

Drilling Method:


Sampler Type: 5' Macrocore


Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 6.0 Total Boring Depth (ft bgs): 21.0 Total Well Depth (ft bgs):

Cascade Drilling

Geoprobe 7720DT

Tim Watson Direct Push

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

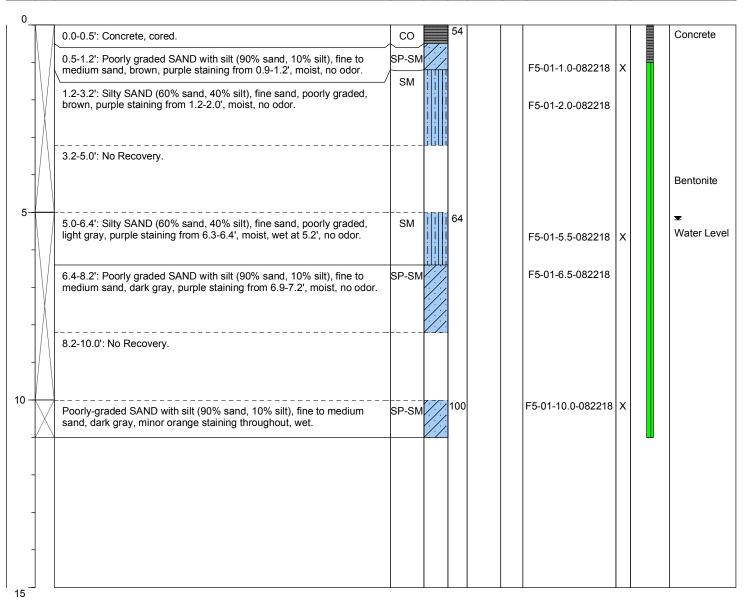
Logged By: R. Ostrom

Date/Time Started: 8/22/18 2130 Date/Time Completed:

Equipment: Drilling Company:

Drilling Foreman:

8/22/18 2230 Geoprobe 7720DT


Cascade Drilling Jeff Tucker

Drilling Method: Direct Push Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 5.2 Total Boring Depth (ft bgs): 11.0 Total Well Depth (ft bgs):

NA

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** % Recovery Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Geoprobe 7720DT

Cascade Drilling

Jeff Tucker

Direct Push

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: R. Ostrom

Date/Time Started: 8/22/18 2240 8/22/18 2315 Date/Time Completed:

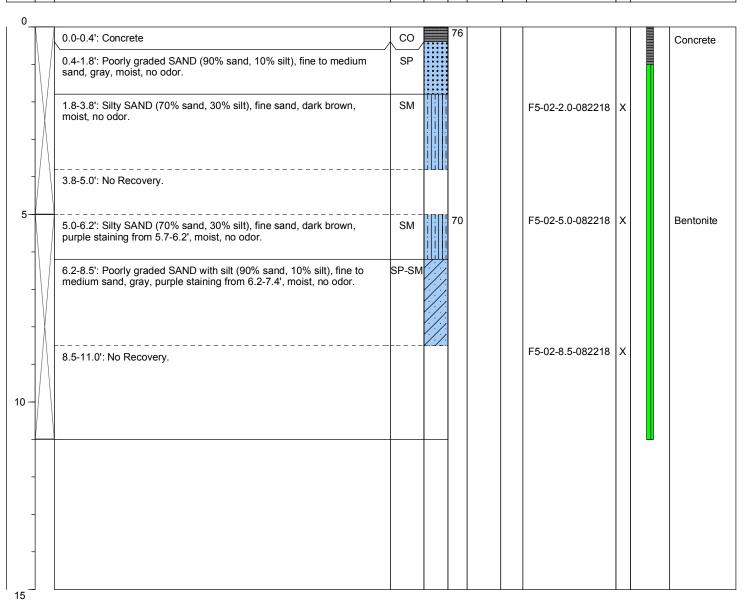
Equipment:

Drilling Company: Drilling Foreman:

Drilling Method:

Sampler Type: 5' Macrocore

Drive Hammer (lbs.):


Auto Depth of Water ATD (ft bgs): NE Total Boring Depth (ft bgs): 11.0

Total Well Depth (ft bgs): NA

NA

NA

et bg	Lithologic Description	SOSN	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
-------	------------------------	------	--------------	------------	-------------------	-----------	-----------	-----------------	--

Well Construction Information Ground Surface Elevation (ft): Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Lithologic Description

Log of Boring: F5-03

(mdd)

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: R. Ostrom

Date/Time Started: 8/22/18 2320 8/23/18 0000 Date/Time Completed:

Equipment: Drilling Company:

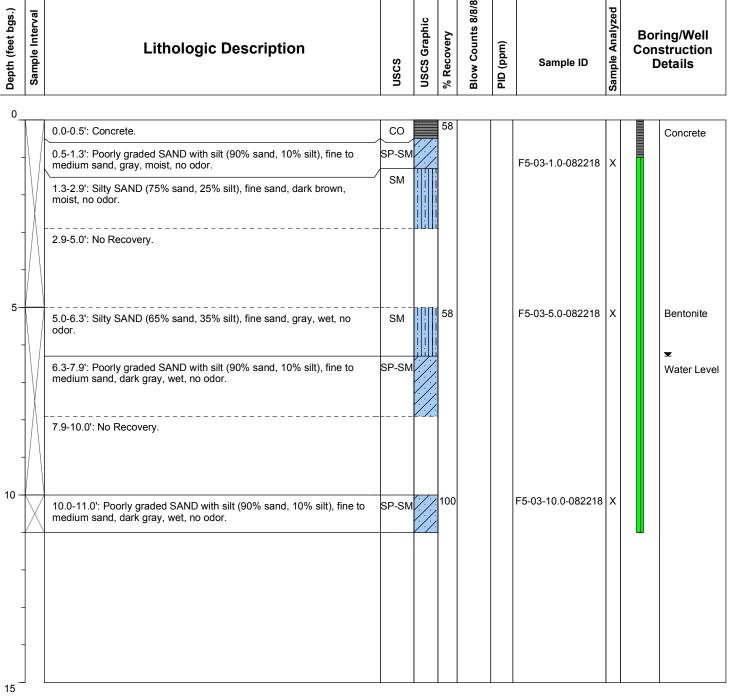
Drilling Foreman:

Drilling Method:

Sampler Type: 5' Macrocore

Sample ID

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 6.3 Total Boring Depth (ft bgs): 11.0 Total Well Depth (ft bgs): NA


Direct Push

Jeff Tucker

Geoprobe 7720DT

Cascade Drilling

Boring/Well Construction **Details**

Monument Type: NA NA Casing Diameter (inches): Screen Slot Size (inches): NA Screened Interval (ft bgs): NA

Well Construction Information Filter Pack: NA

Surface Seal: Concrete Annular Seal: NA **Boring Abandonment:** Bentonite Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location: X:NA

Y: NA

NA

NA

Page 1 of 1

Client: Capital Industries
Project: Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: Greg Peters

Date/Time Started: 9/19
Date/Time Completed: 09/1

Equipment: Drilling Company:

Drilling Foreman: Drilling Method:

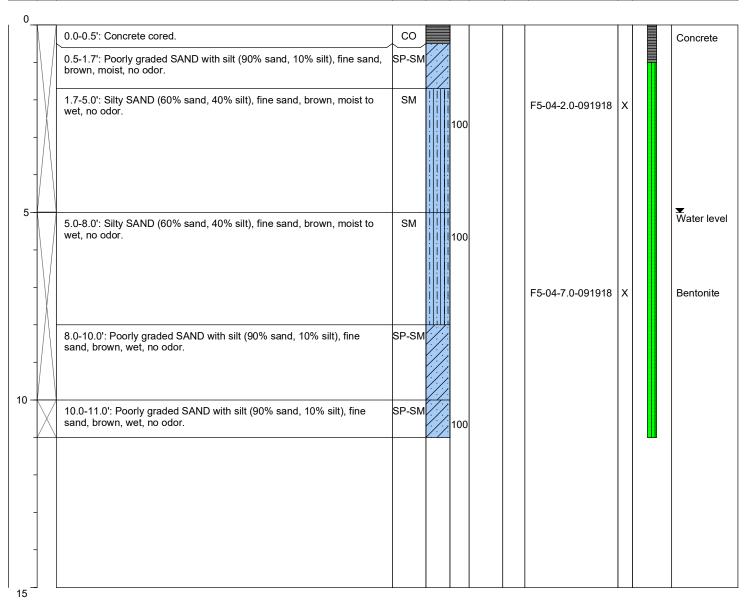
9/19/18 @ 1650 09/19/18 @ 1720

Geoprobe 7720DT
Cascade Drilling
Tim Watson

Direct Push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 5.0
Total Boring Depth (ft bgs): 11.0


Total Well Depth (ft bgs): NA

Sample Interval

Countraction

Blow Counts 8/8/8

Sample Analyzed

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA **Annular Seal:** X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 1 of 1

Client: Capital Industries
Project: Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: Greg Peters

Date/Time Started: 9
Date/Time Completed: 0

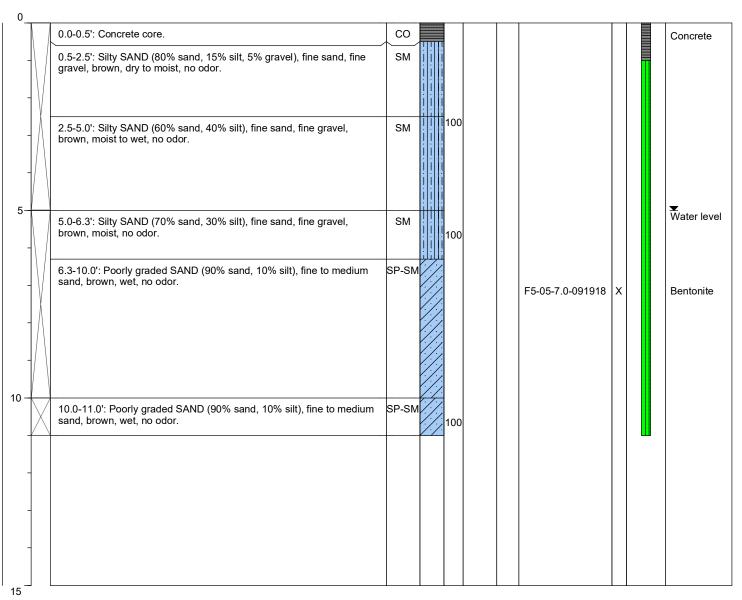
Equipment:
Drilling Company:

Drilling Foreman: Drilling Method:

9/19/18 @ 1613 **9** 09/19/18 @ 1715 **1**

Geoprobe 7720DT Cascade Drilling

Tim Watson
Direct Push


Sampler Type: 5' Macrocore

Drive Hammer (lbs.):AutoDepth of Water ATD (ft bgs):5.0Total Boring Depth (ft bgs):11.0

Total Well Depth (ft bgs): NA

Sample Interval

Sample Analyzed

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA **Annular Seal:** X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Cascade Drilling

Tim Watson

Hand Auger

Page 1 of 1

Client: Capital Industries
Project: Capital Industries

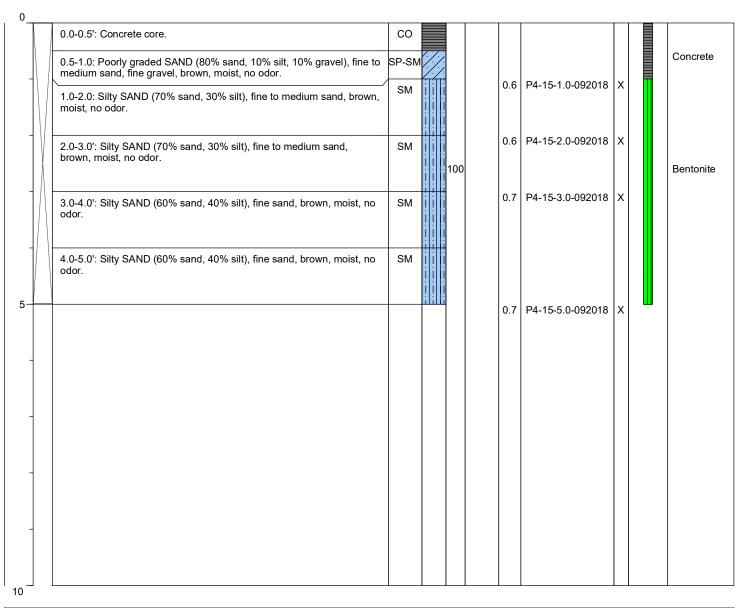
Location: Seattle, WA

Farallon PN: 457-008

Logged By: Greg Peters

Date/Time Started: 9/20/18 @ 1745

Date/Time Completed: 09/20/18 @ 1825 **Equipment:** Hand auger


Drilling Company:
Drilling Foreman:

Drilling Method:

Sampler Type: Auger

Drive Hammer (lbs.):NADepth of Water ATD (ft bgs):NETotal Boring Depth (ft bgs):5.0

Total Well Depth (ft bgs): NA

Well Construction Information NA Ground Surface Elevation (ft): Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Cascade Drilling

Tim Watson

Direct Push

Page 1 of 1

Client: Capital IndustriesProject: Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: Greg Peters

Date/Time Started: 9/19/18 @ 2110 **Date/Time Completed:** 09/19/18 @ 2150

Date/Time Completed: 09/19/18 @ **Equipment:** Hand Auger

Drilling Company:
Drilling Foreman:

Drilling Method:

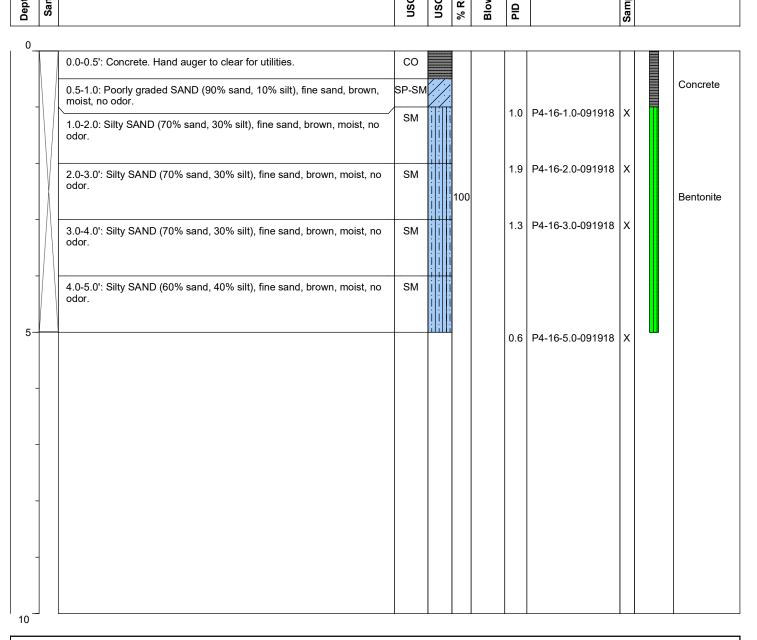
Sampler Type: 5' Macrocore

Drive Hammer (lbs.): NA
Depth of Water ATD (ft bgs): NE
Total Boring Depth (ft bgs): 5.0

Total Well Depth (ft bgs): NA

Sample Interval

Construction


Blow Counts 8/8/8

Sample Analyzed

Both (feet bgs.)

Box Caphic

Construction
Details

Well Construction Information NA Ground Surface Elevation (ft): Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 1 of 1

Capital Industries Client: **Project:** Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: Greg Peters

Date/Time Started: 9/19/18 @ 2240

09/19/18 @ 2250 Date/Time Completed: **Equipment:**

Drilling Company: Drilling Foreman:

Drilling Method:

Geoprobe 7720DT

Cascade Drilling Tim Watson


Direct Push

Sampler Type: 5' Macrocore

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): ΝE

Total Boring Depth (ft bgs): 5.0 Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** % Recovery Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 1 of 1

Client: Capital Industries

Project: Capital Industries

Location: Seattle, WA

Farallon PN: 457-008

Logged By: Greg Peters

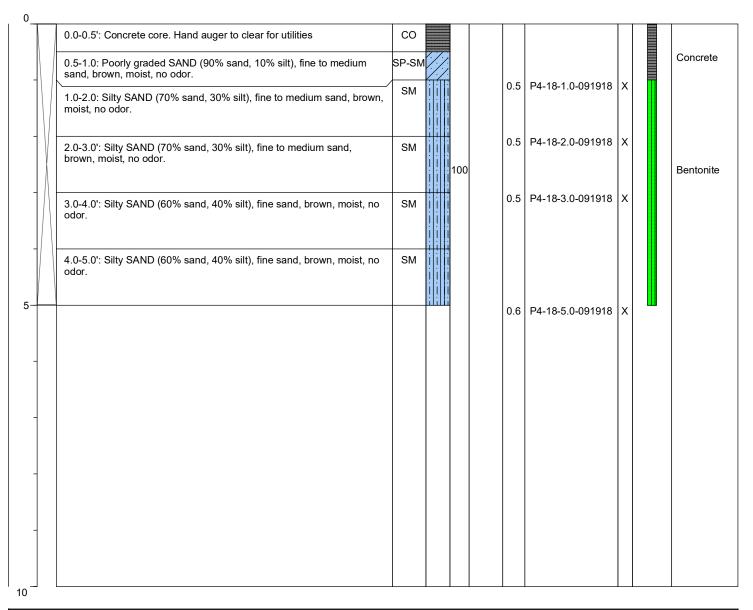
Date/Time Started: 9/19/18 @ 2200

Date/Time Completed: 09/19/18 @ 2230 **Equipment:** Hand auger

Drilling Company: Cascade Drilling
Drilling Foreman: Tim Watson

Drilling Method: Hand Auger

Sampler Type: Auger


Drive Hammer (lbs.): NA
Depth of Water ATD (ft bgs): NE
Total Boring Depth (ft bgs): 5.0

Total Well Depth (ft bgs): NA

Sample Interval

USCS Graphic
USCS Graphic
Blow Counts 8/8/8

Sample Analyzed

Well Construction Information NA Ground Surface Elevation (ft): Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

APPENDIX C REMEDIATION FIELD SERVICES REPORT

FINAL CAPITAL INDUSTRIES PLANT 4 INTERIM ACTION – STAGE 1
IN-SITU CHEMICAL OXIDATION REPORT
West of 4th Group Site
5801 3rd Avenue South
Seattle, Washington

Farallon PN: 457-008

REMEDIATION FIELD SERVICES REPORT

Capital Industries 5801 3rd Avenue South Seattle, WA 98108

Date:

September 11, 2018

Project Number:

306-18-1146

Prepared For:

Farallon Consulting, L.L.C. 975 5th Avenue NW Issaquah, Washington 98027

Prepared by:

Cascade Technical Services 13600 SE Ambler RD Clackamas Oregon 97015

September 11, 2018 Project No. 306-18-1146

Mrs. Jennifer Moore Farallon Consulting, L.L.C. 975 5th Avenue NW Issaquuah, Washington 98027

Subject: Remediation Field Services Report

Capital Industries Seattle, WA Injection/DPT Project

Dear Mrs. Moore,

In accordance with your request and authorization, Cascade Technical Services has performed remediation field services for the subject site. The field services were performed in general accordance with Cascade's proposal dated August 3, 2018.

Cascade appreciates the opportunity to provide our services to you. If you have any questions or comments regarding this report, please contact the undersigned at your convenience.

Respectfully submitted,
CASCADE Technical Services

Chris Lacko SR Project Manager John McAssey Operations Director-Remediation West

Distribution: (1) Addressee (via e-mail)

JM/CL/JM/HR/

Table of Contents

1	Intro	duction	. 4
2	Rem	nediation Approach	. 4
3	Proj	ect Activities	. 4
	3.1	Pre-Mobilization Activities	. 4
	3.2	Onsite Activities	. 4
	3.3	Site Restoration	. 5
4	Limi	tations	.5

Appendices
Appendix A – Injection Summary and Logs
Appendix B – Site Map

1 INTRODUCTION

Farallon Consulting, L.L.C.(Farallon) subcontracted Cascade Technical Services (Cascade) to perform remediation field services at the subject site located at 5801 3rd Avenue South, Seattle, WA. Field services were conducted in general accordance with Cascade's proposal dated August 3 2018.

2 REMEDIATION APPROACH

Utilizing the top-down injection method, a 1.75-inch diameter 2-foot and 5-foot length injection screen were driven into the subsurface using a Geoprobe® direct push technology track mounted rig. A 3% wt/wt solution of RemOx S ISCO potassium permanganate was injected into each of the temporary direct push injection locations. The solution was injected through the tooling into the subsurface in two foot Intervals at depths ranging from 2 ft to 19 ft below ground surface. (see injection logs for details). The solution was mixed onsite on a custom built injection platform.

3 PROJECT ACTIVITIES

The following sections describe the field activities conducted at the site. The activities were conducted from August 18 to August 22, 2018.

3.1 Pre-Mobilization Activities

A site-specific health and safety plan was prepared to address worker and general public safety. Washington One Call) was notified at least 48 hours prior to the commencement of field activities and inquiry identification number 18351972 was obtained for Cascade's scope of work.

3.2 ONSITE ACTIVITIES

On August 18, 2018, Cascade mobilized a custom built injection platform and a Geoprobe® track mounted DPT drill rig to the site. Prior to the commencement of field activities, a tailgate safety meeting was performed. The safety meeting was followed by a site walk to review the proposed injection locations marked by the client. The injection platform was placed inside a secondary containment berm and site control measures consisting of traffic cones and caution tape were implemented to delineate the work area. Spill kits and portable vacuums were placed within the work area for immediate deployment. Transportation and handling of injection materials were coordinated by Cascade.

The scope of work performed by Cascade included a water injection test performed at location F5 with 25 gallons of potable water to establish flow rates and pressures. The injection of a 3% wt/wt solution of RemOx S ISCO potassium permanganate solution was into five direct push injection locations at depths of 2 to 19 feet below ground surface (bgs). Four of the direct push injection locations received 3792 gallons of the 3% solution. One location, E5, received 7044 Gallons of the 3% solution.

Daylighting was observed at most injection locations at the upper interval at 1-3 ft. at a pressure of 12-14 pounds per square inch (psi). As a result, the tooling was advanced to the next Interval and injection activities resumed.

Upon completion of the injection of the 3% solution, the injection lines were flushed with potable water (see injection logs for details). Total volume injected into the four direct push locations was approximately 22,221 gallons (22,201 gallons of the 3% solution and 20 gallons of potable flush water).

Remediation activities were successfully completed on August 22, 2018. Confirmation soil cores were taken around each of the Injection locations.

3.3 SITE RESTORATION

Upon completion of injection activities, the boreholes were backfilled with hydrated bentonite chips. The upper portions of the boreholes (approximately 6-inches) were filled to match the existing surface.

Investigation-derived waste was not generated during remediation activities at the site. Other waste (i.e. personal protective equipment, packaging materials, etc.) were collected in large trash bags and disposed as municipal solid waste.

4 LIMITATIONS

The implementation of the scope of work was performed in accordance with the clients design specification as described above (Sections 1.1) and supporting injection logs (Appendix A). Cascade bears no responsibility for remediation results or impact to existing conditions.

APPENDIX A

Injection Summary and Logs

WEEKLY PROJECT SUMMARY

PROJECT NAME/NUMBER: Farallon Capital Industries 306-18-1146

					% Solution		% Solution	Flush	Total
		On-site	Off-site	Wells	P Mag	Water	Injected	Water	Injected
Day	Date	Time	Time	Completed	(Pounds)	(Gallons)	(Gallons)	Injected	(Gallons)
Saturday	8/18/2018	7:15 AM	6:00 PM	0.0	315.2	1,264.0	1,264.0	0.0	1,264.0
Sunday	8/19/2018	7:00 AM	5:45 PM	1.0	1,391.5	5,581.0	5,581.0	20.0	5,601.0
Monday	8/20/2018	2:15 PM	1:00 AM	0.0	1,346.4	5,400.0	5,400.0	0.0	5,400.0
Tuesday	8/21/2018	2:45 PM	1:00 AM	3.0	1,536.9	6,164.0	6,164.0	0.0	6,164.0
Wednesday	8/22/2018	2:45 PM	1:00 AM	1.0	945.5	3,792.0	3,792.0	0.0	3,792.0
			Totals	5.0	5,535.4	22,201.0	22,201.0	20.0	22,221.0

INJECTION FIELD LOG

PROJECT NUMBER/NAME: Farallon Capital Industries

LEAD OPERATOR: Kyle King

SCOPE OF WORK: Mob to Seattle WA. Set up Injection system. Hand clear locations to 5' bgs. Install injection tooling at 5 locations. Inject 22212 Gls and complete 15 soil borings. Seal all locations and

restore surface

INJECTION APPROACH: 2' and 5' Perforated Screen

											% Solution						
Well ID	Start Date	Start Time	End Date	End Time	-	ectio terva		Initial Pressure (PSI)	Sustained Pressure (PSI)	Average Flow Rate (GPM)	P Mag (Pounds)	Water (Gallons)	% Solution Injected (Gallons)	Flush Water Injected (Gal)	Total Injected (Gal)	Day Lighting	Field Notes
F-5	8/18/2018	3:17 PM	8/18/2018	5:23 PM	3.0	to	5.0	0	31	10.0	315.2	1,264.0	1,264.0	0.0	1,264.0	х	Hand cleared to 5' and backfilled with bentonite chips to seal boring before installing injection tooling. First interval 1'-3' surfaced instantly from annulus. No pressure reading. Advancing 2' to
	8/19/2018	8:40 AM	8/19/2018	10:20 AM	5.0	to	7.0	20	26	12.6	315.2	1,264.0	1,264.0	0.0	1,264.0		Started Injection at 6.5 GPM for 5 min. Turned up to 10.5 GPM 20 PSI. At 950 GLs injected- 10.6 GPM at 26 PSI.
	8/19/2018	10:45 AM	8/19/2018	11:55 AM	7.0	to	9.0	10	21	10.7	187.0	750.0	750.0	0.0	750.0		Initial GPM 8.5 at 10 PSI. At 300 GLs injected increased GPM to 10.5 at 24 PSI
	8/19/2018	12:49 PM	8/19/2018	1:33 PM	9.0	to	9.0	19	30	11.9	128.0	514.0	514.0	10.0	524.0		Point Completed. Sealed boring before continuing injection on E-5
										TOTALS	945.3	3,792.0	3,792.0	10.0	3,802		
E-5	8/19/2018	10:45 AM	8/19/2018	11:55 AM	3.0	to	5.0	14	18	10.7	187.0	750.0	750.0	0.0	750.0		Hand cleared to 5', Pre sealed with bentonite before installing injection tooling. Attempted to inject at 1'-3', instant surfacing from annulus. Pushing down to next interval 3'-5'. Initial GPM 8.5 at 14 PSI. At 300 GLs injected increased GPM to 10.5 at 18 PSI
	8/19/2018	12:49 PM	8/19/2018	1:33 PM	3.0	to	5.0	16	16	11.7	128.0	514.0	514.0	0.0	514.0	х	Noticed very minor surfacing 2' N NW of injection point. Small amount that does not affect injection volume or GPM.
	8/19/2018	2:10 PM	8/19/2018	4:23 PM	5.0	to	7.0	40	8	9.6	315.2	1,264.0	1,264.0	10.0	1,274.0	x	Attempted to Inject at higher GPM. Bumped up to 16 GPM at 48 PSI, Injected 200 GLs before surfacing around bollard apprx. 8' NW from injection point. Slowed flow to 10.5 GPM at 17 PSI. Slowed flow to 8 GPM 10 PSI at 450 GLs injected. At 675 GLs injected slowed flow to 6.5 GPM 6 PSI, Encountering surfacing from cracks within a 10' radius of point. Still minor surfacing but there is an increase in surfacing areas.
	8/20/2018	5:31 PM	8/20/2018	8:22 PM	9.0	to	14.0	43	84	9.5	315.2	1,264.0	1,626.0	0.0	1,626.0		
	8/20/2018	9:33 PM	8/20/2018	10:29 PM	9.0	to	14.0	56	87	11.3	157.5	632.0	632.0	0.0	632.0		
	8/20/2018	10:48 PM	8/20/2018	11:38 PM	14.0	to	19.0	58	95	11.5	143.3	575.0	575.0	0.0	575.0		
	8/21/2018	5:01 PM	8/21/2018	5:23 PM	14.0	to	19.0	47	90	76.5	419.6	1,683.0	1,683.0	0.0	1,683.0		
										TOTALS	1,665.8	6,682.0	7,044.0	10.0	7,054		
B-3	8/19/2018	3:22 PM	8/19/2018	4:23 PM	3.0	to	5.0	40	45	8.8	130.9	525.0	525.0	10.0	535.0		Hand cleared and sealed to 5' with bentonite. Attempted interval 1'-3' surfaced instantly. Advancing to second interval. Slightly higher pressure on this point.
	8/20/2018	5:31 PM	8/20/2018	6:48 PM	3.0	to	5.0	8	44	9.6	184.5	740.0	740.0	0.0	740.0		
	8/20/2018	7:05 PM	8/20/2018	8:22 PM	5.0	to	7.0	34	45	9.3	178.0	714.0	714.0	0.0	714.0		
	8/20/2018	9:33 PM	8/20/2018	10:24 PM	5.0	to	7.0	40	39	10.8	137.0	550.0	550.0	0.0	550.0		
	8/20/2018	10:48 PM	8/20/2018	11:38 PM	7.0	to	9.0	44	78	11.5	143.3	575.0	575.0	0.0	575.0		
	8/21/2018	5:01 PM	8/21/2018	6:00 PM	7.0	to	9.0	50	68	11.7	171.8	689.0	689.0	0.0	689.0		
					TOTALS	945.5	3,793.0	3,793.0	10.0	3,803							
D-4	8/21/2018	6:36 PM	8/21/2018	7:31 PM	2.0	to	4.0	12	16	10.9	149.6	600.0	600.0	0.0	600.0		Started injection slow and gradually increased flow to prevent surfacing from annulus
	8/21/2018	9:03 PM	8/21/2018	9:42 PM	2.0	to	4.0	29	65	17.0	165.5	664.0	664.0	0.0	664.0		
	8/21/2018	10:00 PM	8/21/2018	10:43 PM	4.0	to	6.0	96	94	29.4	315.2	1,264.0	1,264.0	0.0	1,264.0		Increased flow substantially. Steady PSI throughout injection.
	8/21/2018	10·58 PM	8/21/2018	11:44 PM	6.0	to	8.0	95	93	27.5	315.2	1,264.0	1,264.0	0.0	1,264.0		
CASCADE DRILLING I TECHNICAL SERVICES							TOTALS	945.5	3,792.0	3,792.0	0.0	3,792					

INJECTION FIELD LOG

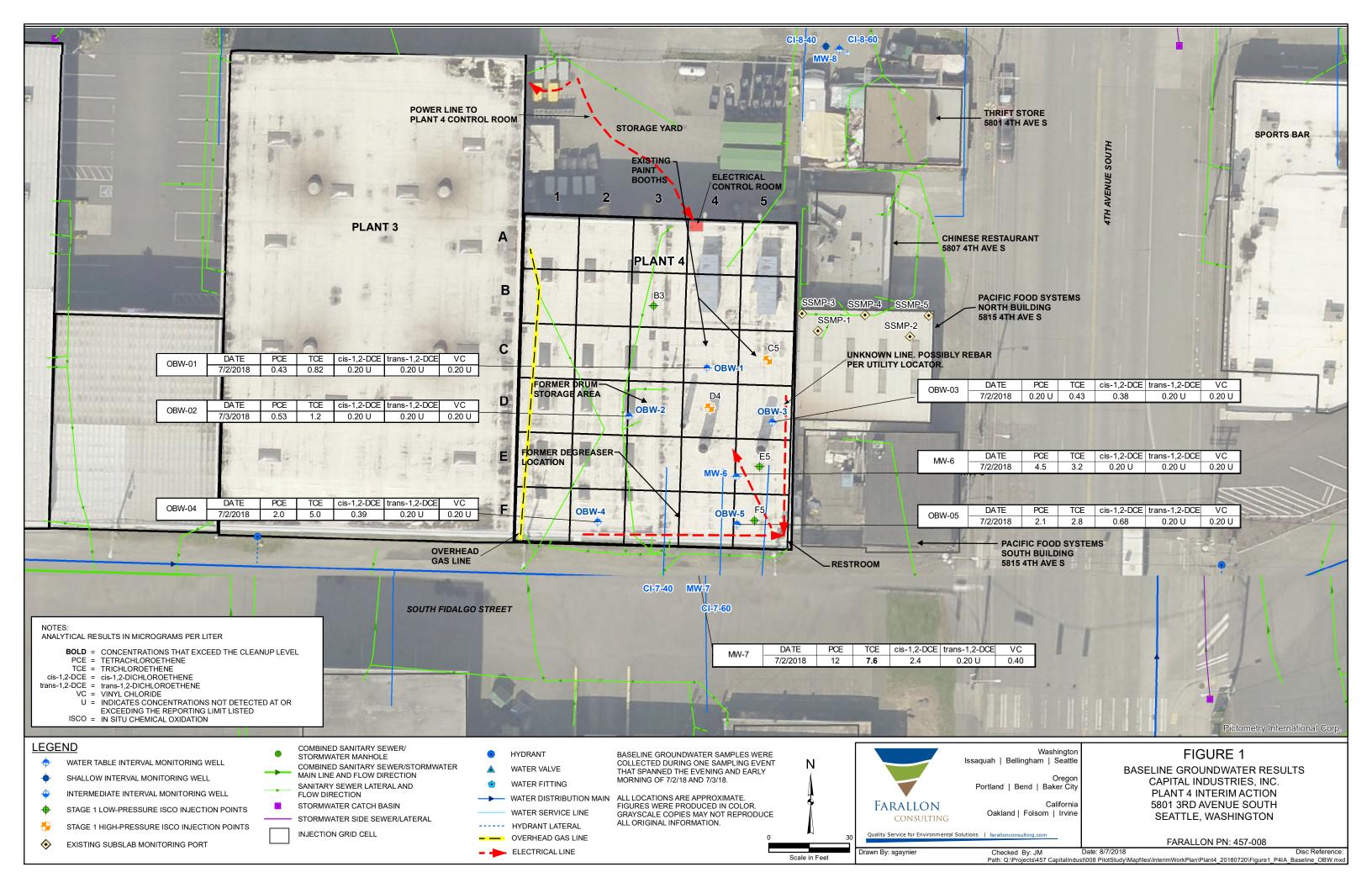
PROJECT NUMBER/NAME: Farallon Capital Industries

LEAD OPERATOR: Kyle King

SCOPE OF WORK: Mob to Seattle WA. Set up Injection system. Hand clear locations to 5' bgs. Install injection tooling at 5 locations. Inject 22212 Gls and complete 15 soil borings. Seal all locations and

restore surface

INJECTION APPROACH: 2' and 5' Perforated Screen


											% S	olution					
Well ID	Start Date	Start Time	End Date	End Time		ectio		Initial Pressure (PSI)	Sustained Pressure (PSI)	Average Flow Rate (GPM)	P Mag (Pounds)	Water (Gallons)	% Solution Injected (Gallons)	Flush Water Injected (Gal)	Total Injected (Gal)	Day Lighting	Field Notes
C-5	8/22/2018	5:00 PM	8/22/2018	5:05 PM	2.0	to	4.0	67	97	15.0	18.7	75.0	75.0	0.0	75.0		Stopped to allow time to check well pressures
	8/22/2018	5:24 PM	8/22/2018	6:06 PM	2.0	to	4.0	105	156	28.3	296.5	1,189.0	1,189.0	0.0	1,189.0		High flow injection point. Gradually increased GPM
	8/22/2018	6:45 PM	8/22/2018	7:27 PM	4.0	to	6.0	163	170	30.1	315.2	1,264.0	1,264.0	0.0	1,264.0		High output with no unusual readings
	8/22/2018	7:57 PM	8/22/2018	8:37 PM	6.0	to	8.0	179	172	31.6	315.2	1,264.0	1,264.0	0.0	1,264.0		
										TOTALS	945.6	3,792.0	3,792.0	0.0	3,792		

APPENDIX B

Site Map

APPENDIX D LABORATORY ANALYTICAL REPORTS

FINAL CAPITAL INDUSTRIES PLANT 4 INTERIM ACTION – STAGE 1
IN-SITU CHEMICAL OXIDATION REPORT
West of 4th Group Site
5801 3rd Avenue South
Seattle, Washington

Farallon PN: 457-008

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 12, 2018

Jennifer Moore Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 457-008

Laboratory Reference No. 1807-006

Dear Jen:

Enclosed are the analytical results and associated quality control data for samples submitted on July 3, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 457-008

Case Narrative

Samples were collected on July 2, 2018 and received by the laboratory on July 3, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Hexavalent Chromium SM 3500-Cr B Analysis

The practical quantitation limit is elevated due to interferences present in the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 457-008

DISSOLVED METALS EPA 200.8/7470A/6010D

Matrix: Water Units: ug/L (ppb)

omo. ag/2 (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-07-070218					
Laboratory ID:	07-006-01					
Arsenic	ND	3.0	EPA 200.8	7-3-18	7-5-18	
Cadmium	ND	4.0	EPA 200.8	7-3-18	7-5-18	
Chromium	ND	10	EPA 200.8	7-3-18	7-5-18	
Iron	2800	56	EPA 6010D	7-3-18	7-10-18	
Lead	ND	1.0	EPA 200.8	7-3-18	7-5-18	
Manganese	180	11	EPA 6010D	7-3-18	7-10-18	
Mercury	ND	0.50	EPA 7470A	7-3-18	7-6-18	
Client ID: Laboratory ID:	MW-06-070218 07-006-02	2.0	EDA 000 0	7010	7.5.10	
Laboratory ID:	07-006-02					
Arsenic	ND	3.0	EPA 200.8	7-3-18	7-5-18	
Cadmium	ND	4.0	EPA 200.8	7-3-18	7-5-18	
Chromium	ND	10	EPA 200.8	7-3-18	7-5-18	
Iron	ND	56	EPA 6010D	7-3-18	7-10-18	
Lead	ND	1.0	EPA 200.8	7-3-18	7-5-18	
Manganese	120	11	EPA 6010D	7-3-18	7-10-18	
Mercury	ND	0.50	EPA 7470A	7-3-18	7-6-18	
Client ID:	OBW-01-070218					
Laboratory ID:	07-006-03					
Arsenic	ND	3.0	EPA 200.8	7-3-18	7-5-18	
Cadmium	ND	4.0	EPA 200.8	7-3-18	7-5-18	
Chromium	ND	10	EPA 200.8	7-3-18	7-5-18	

Iron

Lead Manganese

Mercury

56

1.0

11

0.50

EPA 6010D

EPA 200.8

EPA 6010D

EPA 7470A

7-3-18

7-3-18

7-3-18

7-3-18

7-10-18

7-5-18

7-10-18

7-6-18

570

1.0

86

ND

Project: 457-008

DISSOLVED METALS EPA 200.8/7470A/6010D

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	OBW-02-070218					
Laboratory ID:	07-006-04					
Arsenic	ND	3.0	EPA 200.8	7-5-18	7-5-18	
Cadmium	ND	4.0	EPA 200.8	7-5-18	7-5-18	
Chromium	ND	10	EPA 200.8	7-5-18	7-5-18	
Iron	82	56	EPA 6010D	7-5-18	7-10-18	
Lead	ND	1.0	EPA 200.8	7-5-18	7-5-18	
Manganese	64	11	EPA 6010D	7-5-18	7-10-18	
Mercury	ND	0.50	EPA 7470A	7-5-18	7-6-18	

Client ID:	OBW-03-070218					
Laboratory ID:	07-006-05					
Arsenic	ND	3.0	EPA 200.8	7-3-18	7-5-18	
Cadmium	ND	4.0	EPA 200.8	7-3-18	7-5-18	
Chromium	ND	10	EPA 200.8	7-3-18	7-5-18	
Iron	1200	56	EPA 6010D	7-3-18	7-10-18	
Lead	1.0	1.0	EPA 200.8	7-3-18	7-5-18	
Manganese	82	11	EPA 6010D	7-3-18	7-10-18	
Mercury	ND	0.50	EPA 7470A	7-3-18	7-6-18	

Client ID:	OBW-04-070218					
Laboratory ID:	07-006-06					
Arsenic	ND	3.0	EPA 200.8	7-3-18	7-5-18	
Cadmium	ND	4.0	EPA 200.8	7-3-18	7-5-18	
Chromium	ND	10	EPA 200.8	7-3-18	7-5-18	
Iron	1500	56	EPA 6010D	7-3-18	7-10-18	
Lead	ND	1.0	EPA 200.8	7-3-18	7-5-18	
Manganese	150	11	EPA 6010D	7-3-18	7-10-18	
Mercury	ND	0.50	EPA 7470A	7-3-18	7-6-18	

Project: 457-008

DISSOLVED METALS EPA 200.8/7470A/6010D

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	OBW-05-070218					
Laboratory ID:	07-006-07					
Arsenic	ND	3.0	EPA 200.8	7-3-18	7-5-18	
Cadmium	ND	4.0	EPA 200.8	7-3-18	7-5-18	
Chromium	ND	10	EPA 200.8	7-3-18	7-5-18	
Iron	3300	56	EPA 6010D	7-3-18	7-10-18	
Lead	ND	1.0	EPA 200.8	7-3-18	7-5-18	
Manganese	220	11	EPA 6010D	7-3-18	7-10-18	
Mercury	ND	0.50	EPA 7470A	7-3-18	7-6-18	

DISSOLVED METALS EPA 200.8/7470A/6010D METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0703F1					
ND	3.0	EPA 200.8	7-3-18	7-5-18	
ND	4.0	EPA 200.8	7-3-18	7-5-18	
ND	10	EPA 200.8	7-3-18	7-5-18	
ND	1.0	EPA 200.8	7-3-18	7-5-18	
MB0703F1					
ND	56	EPA 6010D	7-3-18	7-10-18	
ND	11	EPA 6010D	7-3-18	7-10-18	
MB0703F1					
ND	0.50	EPA 7470A	7-3-18	7-6-18	
MB0705F1					
ND	3.0	EPA 200.8	7-5-18	7-5-18	
ND	4.0	EPA 200.8	7-5-18	7-5-18	
ND	10	EPA 200.8	7-5-18	7-5-18	
ND	1.0	EPA 200.8	7-5-18	7-5-18	
MB0705F1					
ND	56	EPA 6010D	7-5-18	7-10-18	
ND	11	EPA 6010D	7-5-18	7-10-18	
MB0705F1					
ND	0.50	EPA 7470A	7-5-18	7-6-18	
	MB0703F1 ND ND ND MB0703F1 ND MB0703F1 ND MB0703F1 ND MB0705F1 ND ND MB0705F1 ND ND MB0705F1 ND ND MB0705F1	MB0703F1 ND 3.0 ND 4.0 ND 10 ND 1.0 MB0703F1 ND 56 ND 11 MB0703F1 ND 0.50 MB0705F1 ND 3.0 ND 4.0 ND 10 ND 10 ND 10 ND 1.0 MB0705F1 ND 56 ND 11 MB0705F1	MB0703F1 ND 3.0 EPA 200.8 ND 4.0 EPA 200.8 ND 10 EPA 200.8 ND 1.0 EPA 200.8 MB0703F1 ND 56 EPA 6010D MB0703F1 ND 0.50 EPA 7470A MB0705F1 ND 3.0 EPA 200.8 ND 4.0 EPA 200.8 ND 10 EPA 200.8 ND 1.0 EPA 200.8 MB0705F1 ND 56 EPA 6010D MB0705F1 ND 56 EPA 6010D MB0705F1 ND 11 EPA 6010D	Result PQL Method Prepared MB0703F1 3.0 EPA 200.8 7-3-18 ND 4.0 EPA 200.8 7-3-18 ND 10 EPA 200.8 7-3-18 ND 1.0 EPA 200.8 7-3-18 MB0703F1 ND 56 EPA 6010D 7-3-18 MB0703F1 ND 0.50 EPA 7470A 7-3-18 MB0705F1 ND 3.0 EPA 200.8 7-5-18 ND 4.0 EPA 200.8 7-5-18 ND 1.0 EPA 6010D 7-5-18 MB0705F1 ND 56 EPA 6010D 7-5-18 MB0705F1 EPA 6010D 7-5-18 PA 6010D 7-5-18	Result PQL Method Prepared Analyzed MB0703F1 ND 3.0 EPA 200.8 7-3-18 7-5-18 ND 4.0 EPA 200.8 7-3-18 7-5-18 ND 10 EPA 200.8 7-3-18 7-5-18 ND 1.0 EPA 200.8 7-3-18 7-5-18 MB0703F1 ND 56 EPA 6010D 7-3-18 7-10-18 MB0703F1 ND 0.50 EPA 7470A 7-3-18 7-6-18 MB0705F1 ND 3.0 EPA 200.8 7-5-18 7-5-18 ND 4.0 EPA 200.8 7-5-18 7-5-18 ND 10 EPA 200.8 7-5-18 7-5-18 ND 1.0 EPA 200.8 7-5-18 7-5-18 ND 1.0 EPA 200.8 7-5-18 7-5-18 MB0705F1 ND 56 EPA 6010D 7-5-18 7-10-18 MB0705F1 ND 11 EPA 6010D 7-5-18 7-10-18

DISSOLVED METALS EPA 200.8/7470A/6010D **QUALITY CONTROL**

Matrix: Water Units: ug/L (ppb)

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-00	06-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		N	lΑ	NA	NA	20	
Cadmium	ND	ND	NA	NA		N	lΑ	NA	NA	20	
Chromium	ND	ND	NA	NA		N	lΑ	NA	NA	20	
Lead	ND	ND	NA	NA		١	IA .	NA	NA	20	
Laboratory ID:	07-00	06-02									
Iron	ND	ND	NA	NA		١	IA	NA	NA	20	
Manganese	118	114	NA	NA		١	IA	NA	3	20	
Laboratory ID:	07-00	06-02									
Mercury	ND	ND	NA	NA		N	IA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	07-00	06-02									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	185	200	200	200	ND	92	100	75-125	8	20	
Cadmium	175	188	200	200	ND	88	94	75-125	7	20	
Chromium	166	176	200	200	ND	83	88	75-125	6	20	
Lead	193	199	200	200	ND	96	99	75-125	3	20	
Laboratory ID:	07-00	06-02									
Iron	22500	22500	22200	22200	ND	102	102	75-125	0	20	
Manganese	687	688	556	556	118	102	103	75-125	0	20	
Laboratory ID:	07-00	06-02									
Mercury	12.1	11.7	12.5	12.5	ND	97	93	75-125	3	20	
iviercury	14.1	11.7	12.0	12.5	טוו	91	30	10-120	<u> </u>	۷.	

TOTAL METALS EPA 200.8/7470A/6010D

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-07-070218					
Laboratory ID:	07-006-01					
Cadmium	ND	4.4	EPA 200.8	7-5-18	7-5-18	
Chromium	ND	11	EPA 200.8	7-5-18	7-5-18	
Iron	56000	560	EPA 6010D	7-5-18	7-10-18	
Lead	ND	1.1	EPA 200.8	7-5-18	7-5-18	
Manganese	270	11	EPA 6010D	7-5-18	7-10-18	
Mercury	ND	0.50	EPA 7470A	7-5-18	7-5-18	
Client ID:	MW-06-070218					
Laboratory ID:	07-006-02					
Cadmium	ND	4.4	EPA 200.8	7-5-18	7-5-18	
Chromium	ND	11	EPA 200.8	7-5-18	7-5-18	
Iron	1200	56	EPA 6010D	7-5-18	7-10-18	
Lead	ND	1.1	EPA 200.8	7-5-18	7-5-18	
Manganese	130	11	EPA 6010D	7-5-18	7-10-18	
Mercury	ND	0.50	EPA 7470A	7-5-18	7-5-18	
Client ID:	OBW-01-070218					
Laboratory ID:	07-006-03					
Cadmium	ND	4.4	EPA 200.8	7-5-18	7-5-18	
Chromium	12	11	EPA 200.8	7-5-18	7-5-18	
Iron	8500	56	EPA 6010D	7-5-18	7-10-18	
Lead	1.9	1.1	EPA 200.8	7-5-18	7-5-18	
Manganese	150	11	EPA 6010D	7-5-18	7-10-18	
Mercury	ND	0.50	EPA 7470A	7-5-18	7-5-18	
Client ID:	OBW-02-070218					
Laboratory ID:	07-006-04					
Cadmium	ND	4.4	EPA 200.8	7-5-18	7-5-18	
Chromium	12	11	EPA 200.8	7-5-18	7-5-18	
Iron	10000	56	EPA 6010D	7-5-18	7-10-18	
Lead	2.1	1.1	EPA 200.8	7-5-18	7-5-18	
Manganese	100	11	EPA 6010D	7-5-18	7-10-18	
Mercury	ND	0.50	EPA 7470A	7-5-18	7-5-18	
,		2.00				

TOTAL METALS EPA 200.8/7470A/6010D

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	OBW-03-070218					
Laboratory ID:	07-006-05					
Cadmium	ND	4.4	EPA 200.8	7-5-18	7-5-18	
Chromium	14	11	EPA 200.8	7-5-18	7-5-18	
Iron	8300	56	EPA 6010D	7-5-18	7-10-18	
Lead	15	1.1	EPA 200.8	7-5-18	7-5-18	
Manganese	130	11	EPA 6010D	7-5-18	7-10-18	
Mercury	ND	0.50	EPA 7470A	7-5-18	7-5-18	

Client ID:	OBW-04-070218					
Laboratory ID:	07-006-06					
Cadmium	ND	4.4	EPA 200.8	7-5-18	7-5-18	
Chromium	ND	11	EPA 200.8	7-5-18	7-5-18	
Iron	4400	56	EPA 6010D	7-5-18	7-10-18	
Lead	ND	1.1	EPA 200.8	7-5-18	7-5-18	
Manganese	170	11	EPA 6010D	7-5-18	7-10-18	
Mercury	ND	0.50	EPA 7470A	7-5-18	7-5-18	

Client ID:	OBW-05-070218					
Laboratory ID:	07-006-07					
Cadmium	ND	4.4	EPA 200.8	7-5-18	7-5-18	
Chromium	ND	11	EPA 200.8	7-5-18	7-5-18	
Iron	6200	56	EPA 6010D	7-5-18	7-10-18	
Lead	ND	1.1	EPA 200.8	7-5-18	7-5-18	
Manganese	260	11	EPA 6010D	7-5-18	7-10-18	
Mercury	ND	0.50	EPA 7470A	7-5-18	7-5-18	

TOTAL METALS EPA 200.8/7470A/6010D **QUALITY CONTROL**

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0705WM1					
Cadmium	ND	4.4	EPA 200.8	7-5-18	7-5-18	
Chromium	ND	11	EPA 200.8	7-5-18	7-5-18	
Lead	ND	1.1	EPA 200.8	7-5-18	7-5-18	
Laboratory ID:	MB0705WM1					
Iron	ND	56	EPA 6010D	7-5-18	7-10-18	
Manganese	ND	11	EPA 6010D	7-5-18	7-10-18	
Laboratory ID:	MB0705W1					
Mercury	ND	0.50	EPA 7470A	7-5-18	7-5-18	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-00	06-02									
	ORIG	DUP									
Cadmium	ND	ND	NA	NA		1	NΑ	NA	NA	20	
Chromium	ND	ND	NA	NA		1	NΑ	NA	NA	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	07-00	06-02									
Iron	1180	1220	NA	NA			NA	NA	3	20	
Manganese	128	129	NA	NA		1	NA	NA	1	20	
Laboratory ID:	07-00	05-01									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
	07.00	06-02									
Laboratory ID:			MC	MCD		MC	MCD				
On almaiu una	MS	MSD	MS	MSD	ND	MS	MSD	75 105		00	
Cadmium	228	235	222	222	ND	103	106	75-125	3	20	
Chromium	211	216	222	222	ND	95	97	75-125	2	20	
Lead	219	221	222	222	ND	99	100	75-125	1	20	
Laboratory ID:	07-00	06-02									
Iron	23800	24100	22200	22200	1180	102	103	75-125	1	20	
Manganese	358	360	222	222	128	104	105	75-125	1	20	
Laboratory ID:	07-00	05-01									
Mercury	11.1	10.6	12.5	12.5	ND	89	85	75-125	4	20	

HEXAVALENT CHROMIUM SM 3500-Cr B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-07-070218					
Laboratory ID:	07-006-01					
Hexavalent Chromium	ND	50	SM 3500-Cr-B	7-3-18	7-3-18	

HEXAVALENT CHROMIUM SM 3500-Cr B **QUALITY CONTROL**

Analyte	Result	PQL		Date	Date Analyzed	
			Method	Prepared		Flags
METHOD BLANK						
Laboratory ID:	MB0703F2					
Hexavalent Chromium	ND	10	SM 3500-Cr-B	7-3-18	7-3-18	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-00	06-01									
	ORIG	DUP									
Hexavalent Chromium	ND	ND	N	IA.	NA		NA	NA	NA	20	
MATRIX SPIKES Laboratory ID:	07-00	06-01									
	MS	MSD	MS	MSD		MS	MSD				
Hexavalent Chromium	454	438	500	500	ND	91	88	75-125	4	20	
SPIKE BLANK											
Laboratory ID:	SB07	03F2									
·	S	В	5	SB			SB			•	•
Hexavalent Chromium	1()5	1	00	NA		105	80-120	NA	NA	

VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-07-070218					
Laboratory ID:	07-006-01					
Vinyl Chloride	0.40	0.20	EPA 8260C	7-5-18	7-5-18	
1,1-Dichloroethene	0.26	0.20	EPA 8260C	7-5-18	7-5-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(cis) 1,2-Dichloroethene	2.4	0.20	EPA 8260C	7-5-18	7-5-18	
Trichloroethene	7.6	0.20	EPA 8260C	7-5-18	7-5-18	
Tetrachloroethene	12	0.20	EPA 8260C	7-5-18	7-5-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	101	<i>78-125</i>				

VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-06-070218					_
Laboratory ID:	07-006-02					
Vinyl Chloride	ND	0.20	EPA 8260C	7-5-18	7-5-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
Trichloroethene	3.2	0.20	EPA 8260C	7-5-18	7-5-18	
Tetrachloroethene	4.5	0.20	EPA 8260C	7-5-18	7-5-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	<i>75-127</i>				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	101	<i>78-125</i>				

VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	OBW-01-070218					_
Laboratory ID:	07-006-03					
Vinyl Chloride	ND	0.20	EPA 8260C	7-5-18	7-5-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
Trichloroethene	0.82	0.20	EPA 8260C	7-5-18	7-5-18	
Tetrachloroethene	0.43	0.20	EPA 8260C	7-5-18	7-5-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	104	<i>78-125</i>				

VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	OBW-02-070218					
Laboratory ID:	07-006-04					
Vinyl Chloride	ND	0.20	EPA 8260C	7-5-18	7-5-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
Trichloroethene	1.2	0.20	EPA 8260C	7-5-18	7-5-18	
Tetrachloroethene	0.53	0.20	EPA 8260C	7-5-18	7-5-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	104	<i>78-125</i>				

VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	OBW-03-070218					
Laboratory ID:	07-006-05					
Vinyl Chloride	ND	0.20	EPA 8260C	7-5-18	7-5-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(cis) 1,2-Dichloroethene	0.38	0.20	EPA 8260C	7-5-18	7-5-18	
Trichloroethene	0.43	0.20	EPA 8260C	7-5-18	7-5-18	
Tetrachloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	<i>75-127</i>				
Toluene-d8	99	80-127				
4-Bromofluorobenzene	102	<i>78-125</i>				

VOLATILES EPA 8260C

· ·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	OBW-04-070218					
Laboratory ID:	07-006-06					
Vinyl Chloride	ND	0.20	EPA 8260C	7-5-18	7-5-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(cis) 1,2-Dichloroethene	0.39	0.20	EPA 8260C	7-5-18	7-5-18	
Trichloroethene	5.0	0.20	EPA 8260C	7-5-18	7-5-18	
Tetrachloroethene	2.0	0.20	EPA 8260C	7-5-18	7-5-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	<i>75-127</i>				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	101	<i>78-125</i>				

VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	OBW-05-070218					
Laboratory ID:	07-006-07					
Vinyl Chloride	ND	0.20	EPA 8260C	7-5-18	7-5-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(cis) 1,2-Dichloroethene	0.68	0.20	EPA 8260C	7-5-18	7-5-18	
Trichloroethene	2.8	0.20	EPA 8260C	7-5-18	7-5-18	
Tetrachloroethene	2.1	0.20	EPA 8260C	7-5-18	7-5-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	<i>75-127</i>				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	103	<i>78-125</i>				

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0705W1					
Vinyl Chloride	ND	0.20	EPA 8260C	7-5-18	7-5-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
Trichloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
Tetrachloroethene	ND	0.20	EPA 8260C	7-5-18	7-5-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	<i>75-127</i>				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	101	<i>78-125</i>				

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	05W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	11.5	10.7	10.0	10.0	115	107	62-129	7	15	
Benzene	11.1	10.5	10.0	10.0	111	105	77-127	6	15	
Trichloroethene	10.7	9.77	10.0	10.0	107	98	70-120	9	15	
Toluene	11.2	10.3	10.0	10.0	112	103	82-123	8	15	
Chlorobenzene	10.8	10.0	10.0	10.0	108	100	79-120	8	15	
Surrogate:										
Dibromofluoromethane					101	102	<i>75-127</i>			
Toluene-d8					100	99	80-127			
4-Bromofluorobenzene					101	99	<i>78-125</i>			

TOTAL DISSOLVED SOLIDS SM 2540C

Onits. Hig/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-07-070218					
Laboratory ID:	07-006-01					
Total Dissolved Solids	230	13	SM 2540C	7-5-18	7-6-18	
Client ID:	MW-06-070218					
Laboratory ID:	07-006-02					
Total Dissolved Solids	220	13	SM 2540C	7-5-18	7-6-18	
Client ID:	OBW-01-070218					
Laboratory ID:	07-006-03					
Total Dissolved Solids	150	13	SM 2540C	7-5-18	7-6-18	
Client ID:	OBW-02-070218					
Laboratory ID:	07-006-04					
Total Dissolved Solids	130	13	SM 2540C	7-5-18	7-6-18	
Client ID:	OBW-03-070218					
Laboratory ID:	07-006-05					
Total Dissolved Solids	130	13	SM 2540C	7-5-18	7-6-18	
Client ID:	OBW-04-070218					
Laboratory ID:	07-006-06					
Total Dissolved Solids	190	13	SM 2540C	7-5-18	7-6-18	
Client ID:	OBW-05-070218					
Laboratory ID:	07-006-07					
Total Dissolved Solids	270	13	SM 2540C	7-5-18	7-6-18	

TOTAL DISSOLVED SOLIDS SM 2540C **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0705W1					
Total Dissolved Solids	ND	13	SM 2540C	7-5-18	7-6-18	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	07-00	06-01							
	ORIG	DUP							
Total Dissolved Solids	228	217	NA	NA	NA	NA	5	17	
SPIKE BLANK									
Laboratory ID:	SB07	05W1							
	S	В	SB	•	SB			•	
Total Dissolved Solids	47	77	500	NA	95	86-115	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

D
ge
1
_
l.
of.
-

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		7 pub-05-070218	812020-10-10-9440 9	5 845-03-070218	1 0000-20-2018	3 CBMB-01-070218		MW-07-070218	Lab ID Sample Identification	Sampled by: Greg Peters	Project Manager:	Project Number: 457-008	company: Favallon Consulting		Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052
Reviewed/Date					0377	towallow Corpustmy	Company		9 THOUS/11/4	07/2/cx 2338 6	07/2/18 1842 6	07/3/18 8042 6	07/2/18 2145 6	07/2/18 2251 6	07/2/18/630 Water 7		(other)	TPH analysis 5 Days) (TPH analysis 5 Days) ainers	2 Days 3 Days	☐ Same Day ☐ 1 Day	(Check One)	Turnaround Request (in working days)
					7/3/18 1050	07/3/18 0225	Date Time									NWTF NWTF Volati Halog	PH-Gx/BTE PH-Gx PH-Dx (A illes 8260C genated Vol.	Acid / SG C	С)		Laboratory Number:
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV		- Sample MW-07-070218 will be about year An		- PCE; TCE; 1,1-DCE; hous-12-DE;	voluge for the following cross	Comments/Special Instructions		* * * * * * * * * * * * * * * * * * * *	*	X	~ × × × ×	× × × × × × × × × × × × ×	× × × × ×	* * * * * * * * * * * * * * * * * * *	(with PAHs PCBs Organ Organ Chlor Total Total HEM His Care Diss Total Total Total Diss Total Diss Total Diss Total Diss Total	volatiles 82 low-level P. 8270D/SIM	AHS) (low-level low-level	B081B	00.8 ury		07-006

Carus Remediation Technologies

Remediation Report

4th September, 2016

Customer: Farallon

975 5th Ave NW Issaquah, WA 98027

Attention: Jen Moore

From: T. Lizer Cc: T. Colgan

TECH # 18-167

Subject: RemOx® S ISCO Reagent Permanganate Natural Oxidant Demand

Summary

The overall average RemOx $^{\otimes}$ S ISCO reagent permanganate natural oxidant demand (PNOD) at 48 hours for the soil samples was determined to be 11.31 g/kg. The average demands ranged from 1.5 g/kg to 33.5 g/kg. These values are calculated on a weight as potassium permanganate (KMnO₄) per dry weight of soil.

Background

Thirty soil samples were received from Farallon from the Capital Industries project located in Seattle, WA. Of the thirty samples, ten were analyzed (Sample identification seen in Table 1). The samples were analyzed for permanganate natural oxidant demand. The measurement of the permanganate natural oxidant demand is used to estimate the concentration of permanganate that will be consumed by the natural reducing agents during a given time period of 48 hours.

Experimental

The samples were analyzed for permanganate natural oxidant demand following ASTM D7262-10 Test Method A. A brief summary is as follows:

To determine the PNOD, the soil was baked at 105°C for 24 hours then allowed to cool to room temperature. The soil was then blended and passed through a U.S. 10 sieve (2 mm). Reactors were loaded with 50 grams of soil and 100 mL of 20 g/L KMnO₄ for an initial dose of 40 g/kg KMnO₄ on a dry soil weight basis at a 1:2 soil to aqueous reagent ratio. Each soil dose was performed in triplicate. The reaction vessels were inverted once to mix the reagents. Residual permanganate (MnO₄-) was determined at 48 hours. The demands were calculated on a dry weight basis.

Results

The permanganate demand is the amount of permanganate consumed in a given amount of time. It should be noted that in a soil or groundwater sample, the oxidation of any compound by permanganate is dependent on the initial dose of permanganate and the reaction time available. As the permanganate dose is increased, the reaction rate and oxidant consumption may also increase. Some compounds that are not typically oxidized by permanganate under low doses can become

reactive with permanganate at higher concentrations. The 48-hour PNOD results can be seen in Table 1 (on a dry soil basis).

Table 1: 48-Hour PNOD *

Soil Sample Identification	Average and Standard Deviation (g/kg)	Replicate 1 (g/kg)	Replicate 2 (g/kg)	Replicate 3 (g/kg)
E5-01-5.0-082318	3.2 ± 0.24	3.1	3.5	3.1
E5-03-3.0-082318	3.7 ± 0.10	3.7	3.5	3.7
E5-01-1.0-082318	21.5 ± 1.33	20.1	21.6	22.8
F5-01-10.0-082218	1.5 ± 0.32	1.5	1.8	1.1
F5-02-2.0-082218	3.0 ± 0.70	2.8	2.4	3.7
C5-02-1.0-082418	19.0 ± 0.98	19.4	19.8	17.9
D4-02-6.5-082418	2.7 ± 0.11	2.8	2.7	2.6
D4-03-1.0-082418	17.5 ± 1.35	18.3	18.3	15.9
B3-01-2.0-082318	33.5 ± 1.30	34.9	33.2	32.4
B3-01-5.0-082318	7.5 ± 0.41	7.9	7.1	7.4
Overall Average	11.31			

^{*}Demands were calculated on a weight KMnO₄/dry soil weight basis from an initial dose of 40.0 g/kg KMnO₄ initial dose at a 1:2 soil to aqueous solution ratio.

Conclusions

For this application the amount of permanganate needed will be dependent on the reaction time allowed. On average, the soil samples had a 48-hour permanganate demand value of 11.31 g/kg. The average demands ranged from 1.5 g/kg to 33.5 g/kg. Generally, remediation sites with a soil demand of less than 20.0 g/kg at the time of interest are favorable for *in situ* chemical oxidation with permanganate (see Table 2 for additional information).

Table 2: Correlation of Permanganate Natural Oxidant Demand Results*

PNOD (g/kg)	Rank	Comment
<10	Low	ISCO with MnO ₄ ⁻ is recommended. Soil contribution to MnO ₄ ⁻ demand is low.
10-20	Moderate	ISCO with MnO ₄ is recommended. Soil contribution to MnO ₄ demand is moderate. Economics should be considered.
>20	High	ISCO with MnO ₄ is technically feasible. Other technologies may provide lower cost alternatives.

^{*}Dry Weight Basis

August 28, 2018

Jennifer Moore Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 457-008

Laboratory Reference No. 1808-268

Dear Jennifer:

Enclosed are the analytical results and associated quality control data for samples submitted on August 23, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 457-008

Case Narrative

Samples were collected on August 22, 2018 and received by the laboratory on August 23, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F5-01-2.0-082218					
Laboratory ID:	08-268-01					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Trichloroethene	0.11	0.0010	EPA 8260C	8-24-18	8-24-18	
Tetrachloroethene	0.16	0.0010	EPA 8260C	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	68-139				
Toluene-d8	100	79-128				
4-Bromofluorobenzene	90	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F5-01-6.5-082218					
Laboratory ID:	08-268-02					
Vinyl Chloride	ND	0.00097	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethene	ND	0.00097	EPA 8260C	8-24-18	8-24-18	
(trans) 1,2-Dichloroethene	ND	0.00097	EPA 8260C	8-24-18	8-24-18	
(cis) 1,2-Dichloroethene	ND	0.00097	EPA 8260C	8-24-18	8-24-18	
Trichloroethene	ND	0.00097	EPA 8260C	8-24-18	8-24-18	
Tetrachloroethene	0.0015	0.00097	EPA 8260C	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	68-139				
Toluene-d8	107	79-128				
4-Bromofluorobenzene	104	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F5-01-10.0-082218					
Laboratory ID:	08-268-03					
Vinyl Chloride	ND	0.0011	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	8-24-18	8-24-18	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-24-18	8-24-18	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-24-18	8-24-18	
Trichloroethene	0.0023	0.0011	EPA 8260C	8-24-18	8-24-18	
Tetrachloroethene	0.0078	0.0011	EPA 8260C	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	68-139				
Toluene-d8	107	<i>79-128</i>				
4-Bromofluorobenzene	103	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F5-02-2.0-082218					
Laboratory ID:	08-268-04					
Vinyl Chloride	ND	0.0012	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethene	ND	0.0012	EPA 8260C	8-24-18	8-24-18	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	8-24-18	8-24-18	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	8-24-18	8-24-18	
Trichloroethene	0.022	0.0012	EPA 8260C	8-24-18	8-24-18	
Tetrachloroethene	0.040	0.0012	EPA 8260C	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	68-139				
Toluene-d8	108	79-128				
4-Bromofluorobenzene	102	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F5-02-8.5-082218					
Laboratory ID:	08-268-05					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Trichloroethene	0.0019	0.0010	EPA 8260C	8-24-18	8-24-18	
Tetrachloroethene	0.0073	0.0010	EPA 8260C	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	68-139				
Toluene-d8	109	79-128				
4-Bromofluorobenzene	117	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F5-03-1.0-082218					
Laboratory ID:	08-268-06					
Vinyl Chloride	ND	0.00096	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethene	ND	0.00096	EPA 8260C	8-24-18	8-24-18	
(trans) 1,2-Dichloroethene	ND	0.00096	EPA 8260C	8-24-18	8-24-18	
(cis) 1,2-Dichloroethene	ND	0.00096	EPA 8260C	8-24-18	8-24-18	
Trichloroethene	0.0047	0.00096	EPA 8260C	8-24-18	8-24-18	
Tetrachloroethene	0.0031	0.00096	EPA 8260C	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	68-139				
Toluene-d8	108	79-128				
4-Bromofluorobenzene	104	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F5-03-5.0-082218					
Laboratory ID:	08-268-07					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Trichloroethene	0.045	0.0010	EPA 8260C	8-24-18	8-24-18	
Tetrachloroethene	0.042	0.0010	EPA 8260C	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-139				
Toluene-d8	109	79-128				
4-Bromofluorobenzene	101	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F5-03-10.0-082218					
Laboratory ID:	08-268-08					
Vinyl Chloride	ND	0.00087	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethene	ND	0.00087	EPA 8260C	8-24-18	8-24-18	
(trans) 1,2-Dichloroethene	ND	0.00087	EPA 8260C	8-24-18	8-24-18	
(cis) 1,2-Dichloroethene	ND	0.00087	EPA 8260C	8-24-18	8-24-18	
Trichloroethene	0.0053	0.00087	EPA 8260C	8-24-18	8-24-18	
Tetrachloroethene	0.014	0.00087	EPA 8260C	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	68-139				
Toluene-d8	109	<i>79-128</i>				
4-Bromofluorobenzene	105	71-132				

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0824S1					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Trichloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-24-18	8-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	68-139				
Toluene-d8	101	79-128				
4-Bromofluorobenzene	97	71-132				

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Result		Spike	Spike Level		overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	24S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0480	0.0510	0.0500	0.0500	96	102	53-141	6	17	
Benzene	0.0481	0.0509	0.0500	0.0500	96	102	70-130	6	15	
Trichloroethene	0.0506	0.0520	0.0500	0.0500	101	104	74-122	3	16	
Toluene	0.0513	0.0551	0.0500	0.0500	103	110	76-130	7	15	
Chlorobenzene	0.0488	0.0506	0.0500	0.0500	98	101	75-120	4	14	
Surrogate:										
Dibromofluoromethane					98	94	68-139			
Toluene-d8					101	103	79-128			
4-Bromofluorobenzene					98	98	71-132			

% MOISTURE

Date Analyzed: 8-24-18

Client ID	Lab ID	% Moisture
F5-01-2.0-082218	08-268-01	20
F5-01-6.5-082218	08-268-02	13
F5-01-10.0-082218	08-268-03	18
F5-02-2.0-082218	08-268-04	20
F5-02-8.5-082218	08-268-05	20
F5-03-1.0-082218	08-268-06	9
F5-03-5.0-082218	08-268-07	23
F5-03-10.0-082218	08-268-08	16

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page	
0	
of	

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature) www	30	8 75-03-10:0-0	7 45-03-5.0-082218	6 F5-03-1.0-0	5 FS-02-8,5-082218	4 55-02-20-0	3 15-01-10.0-	2 45-01-65-	1 F5-01-2.0-082218	Lab ID Sample Ids	Ryan Ostron	Jen Moore	Cepital Industries	457-008	Fried Number		Allaylical Laudiadory lesting services 14648 NE 95th Street • Redmond
					X A	1 R. Mory	ire			812280-0.01	782218	312280-0.1	8/228	2.0-082218	812280-0:01	812280-		Sample Identification Sa						Phone: (425) 883-3881 • www.onsite-env.com	14648 USE 95th Street • Redmond, WA 98052
Reviewed/Date					380	Forallowana	Company			2350 1	0462	2325	2314	847.2	2225	2215	S 2412 3/22/8	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	(in working days)
					8/23/18 1420	July 8/13 1220	Date Time										S S S S S S S S S S S S S S S S S S S	NWTF NWTF NWTF Volatil	PH-HCI PH-Gx/PH-Gx PH-Dx (les 826 enated	BTEX Acid C Volatile	/ SG CI	>)		Laboratory Number:
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard / Level III Level IV				trans-1,2-Det; 1,1-Det; Vinylchloride	evocs include: PCETTCE; cis-1,2, DE;	Comments/Special Instructions			4							*	Semix (with I PAHs PCBs Organ Organ Total I Total I HEM (volatiles ow-leve 8270D, 8082A 8082A nochlori inated // WTCA I Metals (oil and	s 8270D el PAHs /SIM (lo ine Pest phorus I Acid He Metals Metals	/SIM	081B es 8270			08-268

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 29, 2018

Jennifer Moore Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 457-008

Laboratory Reference No. 1808-291

Dear Jen:

Enclosed are the analytical results and associated quality control data for samples submitted on August 24, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely.

David Baumeister Project Manager

Enclosures

Date of Report: August 29, 2018 Samples Submitted: August 24, 2018 Laboratory Reference: 1808-291

Project: 457-008

Case Narrative

Samples were collected on August 23, 2018 and received by the laboratory on August 24, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260C Analysis

Stir bars were not detected in the VOA vials provided for sample E5-01-5.0-082318.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B3-01-2.0-082318					
Laboratory ID:	08-291-01					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
(trans) 1,2-Dichloroethene	0.0052	0.0010	EPA 8260C	8-27-18	8-27-18	
(cis) 1,2-Dichloroethene	0.033	0.0010	EPA 8260C	8-27-18	8-27-18	
Trichloroethene	1.2	0.061	EPA 8260C	8-28-18	8-28-18	
Tetrachloroethene	0.0032	0.0010	EPA 8260C	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	68-139				
Toluene-d8	108	79-128				
4-Bromofluorobenzene	96	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B3-02-2.0-082318					
Laboratory ID:	08-291-02					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
(cis) 1,2-Dichloroethene	0.0048	0.0010	EPA 8260C	8-27-18	8-27-18	
Trichloroethene	2.4	0.065	EPA 8260C	8-28-18	8-28-18	
Tetrachloroethene	0.0063	0.0010	EPA 8260C	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	68-139				
Toluene-d8	104	79-128				
4-Bromofluorobenzene	82	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B3-03-2.0-082318					
Laboratory ID:	08-291-03					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
Trichloroethene	0.082	0.0010	EPA 8260C	8-27-18	8-27-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	68-139				
Toluene-d8	108	79-128				
4-Bromofluorobenzene	101	71-132				

VOLATILE ORGANICS EPA 8260C

	Result	PQL	Method	Date	Date Analyzed	Flags
Analyte				Prepared		
Client ID:	E5-01-1.0-082318					
Laboratory ID:	08-291-04					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
Trichloroethene	0.0071	0.0010	EPA 8260C	8-27-18	8-27-18	
Tetrachloroethene	0.0044	0.0010	EPA 8260C	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-139				
Toluene-d8	112	79-128				
4-Bromofluorobenzene	106	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E5-01-5.0-082318					
Laboratory ID:	08-291-05					
Vinyl Chloride	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	0.0030	0.00093	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	0.076	0.00093	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	0.078	0.00093	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	68-139				
Toluene-d8	111	79-128				
4-Bromofluorobenzene	111	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E5-01-11.0-082318					
Laboratory ID:	08-291-06					
Vinyl Chloride	ND	0.0017	EPA 8260C	8-27-18	8-27-18	
1,1-Dichloroethene	ND	0.0017	EPA 8260C	8-27-18	8-27-18	
(trans) 1,2-Dichloroethene	ND	0.0017	EPA 8260C	8-27-18	8-27-18	
(cis) 1,2-Dichloroethene	ND	0.0017	EPA 8260C	8-27-18	8-27-18	
Trichloroethene	0.0074	0.0017	EPA 8260C	8-27-18	8-27-18	
Tetrachloroethene	0.017	0.0017	EPA 8260C	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	68-139				
Toluene-d8	109	79-128				
4-Bromofluorobenzene	110	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E5-02-1.0-082318					
Laboratory ID:	08-291-07					
Vinyl Chloride	ND	0.00092	EPA 8260C	8-27-18	8-27-18	
1,1-Dichloroethene	ND	0.00092	EPA 8260C	8-27-18	8-27-18	
(trans) 1,2-Dichloroethene	ND	0.00092	EPA 8260C	8-27-18	8-27-18	
(cis) 1,2-Dichloroethene	ND	0.00092	EPA 8260C	8-27-18	8-27-18	
Trichloroethene	0.0037	0.00092	EPA 8260C	8-27-18	8-27-18	
Tetrachloroethene	0.0043	0.00092	EPA 8260C	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	68-139				
Toluene-d8	109	79-128				
4-Bromofluorobenzene	108	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E5-02-5.0-082318					
Laboratory ID:	08-291-08					
Vinyl Chloride	ND	0.00096	EPA 8260C	8-27-18	8-27-18	
1,1-Dichloroethene	ND	0.00096	EPA 8260C	8-27-18	8-27-18	
(trans) 1,2-Dichloroethene	ND	0.00096	EPA 8260C	8-27-18	8-27-18	
(cis) 1,2-Dichloroethene	ND	0.00096	EPA 8260C	8-27-18	8-27-18	
Trichloroethene	0.011	0.00096	EPA 8260C	8-27-18	8-27-18	
Tetrachloroethene	0.034	0.00096	EPA 8260C	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	68-139				
Toluene-d8	109	79-128				
4-Bromofluorobenzene	105	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E5-02-14.0-082318					
Laboratory ID:	08-291-09					
Vinyl Chloride	ND	0.0011	EPA 8260C	8-27-18	8-27-18	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18	
Trichloroethene	0.0012	0.0011	EPA 8260C	8-27-18	8-27-18	
Tetrachloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	68-139				
Toluene-d8	109	79-128				
4-Bromofluorobenzene	108	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E5-02-20.0-082318					
Laboratory ID:	08-291-10					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
Trichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	68-139				
Toluene-d8	108	79-128				
4-Bromofluorobenzene	107	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E5-03-3.0-082318					
Laboratory ID:	08-291-11					
Vinyl Chloride	ND	0.0011	EPA 8260C	8-27-18	8-27-18	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18	
Trichloroethene	0.047	0.0011	EPA 8260C	8-27-18	8-27-18	
Tetrachloroethene	0.049	0.0011	EPA 8260C	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-139				
Toluene-d8	109	<i>79-128</i>				
4-Bromofluorobenzene	106	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E5-03-9.0-082318					
Laboratory ID:	08-291-12					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
Trichloroethene	0.042	0.0010	EPA 8260C	8-27-18	8-27-18	
Tetrachloroethene	0.15	0.0010	EPA 8260C	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	68-139				
Toluene-d8	110	79-128				
4-Bromofluorobenzene	99	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E5-03-14.0-082318					
Laboratory ID:	08-291-13					
Vinyl Chloride	ND	0.0011	EPA 8260C	8-27-18	8-27-18	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18	
Trichloroethene	0.0047	0.0011	EPA 8260C	8-27-18	8-27-18	
Tetrachloroethene	0.0082	0.0011	EPA 8260C	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	68-139				
Toluene-d8	109	79-128				
4-Bromofluorobenzene	105	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	E5-03-19.0-082318						
Laboratory ID:	08-291-14						
Vinyl Chloride	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
1,1-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
Trichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
Tetrachloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	99	68-139					
Toluene-d8	108	79-128					
4-Bromofluorobenzene	108	71-132					

VOLATILE ORGANICS EPA 8260C

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	B3-01-9.0-082318						
Laboratory ID:	08-291-15						
Vinyl Chloride	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
1,1-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
Trichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
Tetrachloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	98	68-139					
Toluene-d8	111	79-128					
4-Bromofluorobenzene	106	71-132					

VOLATILE ORGANICS EPA 8260C

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	B3-01-11.0-082318						
Laboratory ID:	08-291-16						
Vinyl Chloride	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
1,1-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
Trichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
Tetrachloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	99	68-139					
Toluene-d8	111	79-128					
4-Bromofluorobenzene	105	71-132					

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B3-02-6.0-082318					
Laboratory ID:	08-291-17					
Vinyl Chloride	ND	0.00088	EPA 8260C	8-27-18	8-27-18	
1,1-Dichloroethene	ND	0.00088	EPA 8260C	8-27-18	8-27-18	
(trans) 1,2-Dichloroethene	ND	0.00088	EPA 8260C	8-27-18	8-27-18	
(cis) 1,2-Dichloroethene	ND	0.00088	EPA 8260C	8-27-18	8-27-18	
Trichloroethene	0.016	0.00088	EPA 8260C	8-27-18	8-27-18	
Tetrachloroethene	ND	0.00088	EPA 8260C	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	68-139				
Toluene-d8	108	79-128				
4-Bromofluorobenzene	107	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	B3-03-11.0-082318						
Laboratory ID:	08-291-20						
Vinyl Chloride	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
1,1-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
Trichloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
Tetrachloroethene	ND	0.0011	EPA 8260C	8-27-18	8-27-18		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	100	68-139					
Toluene-d8	110	79-128					
4-Bromofluorobenzene	105	71-132					

VOLATILE ORGANICS EPA 8260C

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	D4-01-1.0-082318						
Laboratory ID:	08-291-21						
Vinyl Chloride	ND	0.0010	EPA 8260C	8-27-18	8-27-18		
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18		
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18		
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18		
Trichloroethene	0.0023	0.0010	EPA 8260C	8-27-18	8-27-18		
Tetrachloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	98	68-139					
Toluene-d8	111	79-128					
4-Bromofluorobenzene	106	71-132					

VOLATILE ORGANICS EPA 8260C

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	D4-01-5.0-082318						
Laboratory ID:	08-291-22						
Vinyl Chloride	ND	0.00087	EPA 8260C	8-28-18	8-28-18		
1,1-Dichloroethene	ND	0.00087	EPA 8260C	8-28-18	8-28-18		
(trans) 1,2-Dichloroethene	ND	0.00087	EPA 8260C	8-28-18	8-28-18		
(cis) 1,2-Dichloroethene	ND	0.00087	EPA 8260C	8-28-18	8-28-18		
Trichloroethene	0.0056	0.00087	EPA 8260C	8-28-18	8-28-18		
Tetrachloroethene	0.0023	0.00087	EPA 8260C	8-28-18	8-28-18		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	99	68-139					
Toluene-d8	110	<i>79-128</i>					
4-Bromofluorobenzene	104	71-132					

VOLATILE ORGANICS EPA 8260C

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	D4-01-10.0-082318						
Laboratory ID:	08-291-23						
Vinyl Chloride	ND	0.00095	EPA 8260C	8-28-18	8-28-18		
1,1-Dichloroethene	ND	0.00095	EPA 8260C	8-28-18	8-28-18		
(trans) 1,2-Dichloroethene	ND	0.00095	EPA 8260C	8-28-18	8-28-18		
(cis) 1,2-Dichloroethene	ND	0.00095	EPA 8260C	8-28-18	8-28-18		
Trichloroethene	ND	0.00095	EPA 8260C	8-28-18	8-28-18		
Tetrachloroethene	ND	0.00095	EPA 8260C	8-28-18	8-28-18		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	100	68-139					
Toluene-d8	109	79-128					
4-Bromofluorobenzene	106	71-132					

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0827S2					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
Trichloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-27-18	8-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	68-139				
Toluene-d8	110	79-128				
4-Bromofluorobenzene	107	71-132				

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0828S1					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Trichloroethene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-28-18	8-28-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	68-139				
Toluene-d8	110	79-128				
4-Bromofluorobenzene	108	71-132				

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0829S1					
	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
Vinyl Chloride						
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-139				
Toluene-d8	110	<i>79-128</i>				
4-Bromofluorobenzene	109	71-132				

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	27S2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0509	0.0523	0.0500	0.0500	102	105	53-141	3	17	
Benzene	0.0486	0.0498	0.0500	0.0500	97	100	70-130	2	15	
Trichloroethene	0.0515	0.0507	0.0500	0.0500	103	101	74-122	2	16	
Toluene	0.0516	0.0529	0.0500	0.0500	103	106	76-130	2	15	
Chlorobenzene	0.0496	0.0501	0.0500	0.0500	99	100	75-120	1	14	
Surrogate:										
Dibromofluoromethane					98	98	68-139			
Toluene-d8					108	105	<i>79-128</i>			
4-Bromofluorobenzene					106	109	71-132			

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	28S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0502	0.0520	0.0500	0.0500	100	104	53-141	4	17	
Benzene	0.0489	0.0484	0.0500	0.0500	98	97	70-130	1	15	
Trichloroethene	0.0502	0.0501	0.0500	0.0500	100	100	74-122	0	16	
Toluene	0.0538	0.0515	0.0500	0.0500	108	103	76-130	4	15	
Chlorobenzene	0.0494	0.0481	0.0500	0.0500	99	96	75-120	3	14	
Surrogate:										
Dibromofluoromethane					95	97	68-139			
Toluene-d8					111	107	<i>79-128</i>			
4-Bromofluorobenzene					111	108	71-132			

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	29S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0544	0.0551	0.0500	0.0500	109	110	53-141	1	17	
Benzene	0.0524	0.0522	0.0500	0.0500	105	104	70-130	0	15	
Trichloroethene	0.0531	0.0512	0.0500	0.0500	106	102	74-122	4	16	
Toluene	0.0551	0.0549	0.0500	0.0500	110	110	76-130	0	15	
Chlorobenzene	0.0501	0.0508	0.0500	0.0500	100	102	75-120	1	14	
Surrogate:										
Dibromofluoromethane					99	100	68-139			
Toluene-d8					110	110	<i>79-128</i>			
4-Bromofluorobenzene					110	108	71-132			

% MOISTURE

Date Analyzed: 8-27-18

Client ID	Lab ID	% Moisture
B3-01-2.0-082318	08-291-01	19
B3-02-2.0-082318	08-291-02	21
B3-03-2.0-082318	08-291-03	10
F5-01-1.0-082318	08-291-04	23
F5-01-5.0-082318	08-291-05	21
F5-01-11.0-082318	08-291-06	22
F5-02-1.0-082318	08-291-07	11
F5-02-5.0-082318	08-291-08	23
F5-02-14.0-082318	08-291-09	24
F5-02-20.0-082318	08-291-10	23
F5-03-3.0-082318	08-291-11	23
F5-03-9.0-082318	08-291-12	21
F5-03-14.0-082318	08-291-13	25
F5-03-19.0-082318	08-291-14	22
B3-01-9.0-082318	08-291-15	19
B3-01-11.0-082318	08-291-16	20
B3-02-6.0-082318	08-291-17	14
B3-03-11.0-082318	08-291-20	25
D4-01-1.0-082318	08-291-21	14
D4-01-5.0-082318	08-291-22	13
D4-01-10.0-082318	08-291-23	16

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		naround Requ n working day			La	abo	rato	ory	Nur	nbe	er:	0	8	- 2	9	1							12.5			
Compa	Phone: (425) 883-3881 • www.onsite-env.com	-	(Check One)														_							T	T	T	
	tarallon	Same	e Day	1 Day													8270D/SIM										
2	Number: 157-008	2 Day	ys [3 Days					Clean-up)		-					8081B	8270	8151A									
Project	Name:		dard (7 Days)						SG Cle		2000	(Vinc	_	(level)		es 809	icides	ides 8				94A					
Project	pital Industries Manager:	-	, ,,		iners				Acid / S		lles 87	aters (D/SIN	low-le		sticid	s Pesi	lerbic		,,		grease) 1664A				-	
Campl	Jen Moore	1 -			Containers		BTEX		□ Ac	00	Volat	11 (W	8270 el PAH	/SIM (ine Pe	phoru	Acid F	Metals	Metals			*				
R	Jen Moere yan Ostsom		(other)			무무	H-Gx/	¥9-	H-Dx	ss 826	nated	PA 80	olatiles ow-lev	8270D/SIM (low-level)	3082A	ochlor	soydo	ated,	CRA	ITCA	Metals	oil and	Š			di ira	Sinte
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Number of	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx (Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8	PCBs 8082A	Organochlorine Pesticides	Organophosphorus Pesticides	Chlorinated Acid Herbicides	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and	J			% Moisture	NO INICIA
1	83-01-2.0-082318	8123/18	1650	S	5																		X)	
2	B3-02-2,0-082318		1720		5																		X				1
3	B3-03-2.0-082318		1730		5																		X				
4	E5-01-1.0-082318		1755		5																		X				
5	F5-01-5.0-082318		1805		5																		X				
6	E5-01-11.0-082318		1825		5																		X				
7	E5-02-1-0-082318		1840		5																		X				
8	E5-02-5.0-082318		1855		5																		X				
9	E5-02-14.0-082318		1915		5												9						X				
10	E5-02-20.0-082318	V	1940	V	5																		X				1
	Signature	Co	ompany				Date			Time	1}				s/Spe												
Reline	quished Ifh. More		Farallo.	Con	sul	He/	87	4	8	11	36		*	ON	17	41	aly	20	+ 70	De	th	e	-01	low	plag	,	
Rece			Faralle.	SE		•	8	24	118	1	74	0	PC	E;	TC	E;	Cie	>-1	,2-	-DC	E;	to	eins	,-1,	2-D	CE	-;
Relin	quished												1,1	-D	CE	; \	lin	yl	Ch	lor	de						
Rece	ived																,										
Relin	quished														_ال_				1								
Rece	ived												Data	Pac	kage:	Sta	ndar	d/	Lev	vel III		Leve	IV [1			
Revie	eviewed/Date Reviewed/Date Chromatograms with final report Electronic Data Deliverables (EDDs)																										

OnSite Environmental Inc.

Chain of Custody

Page 2 of 3

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		naround Req n working da			La	abo	rato	ry l	Numl	ber:	0	18	- 2	29	1									
Phone: (425) 883-3881 • www.onsite-env.com Company:		(Check One)						T		-									Ī			T	T	T
Farallou	Same	e Day	1 Day												MIS/C									
Project Number: 457-008	2 Day	vs [3 Days				1	dh						18	8270	8151A								
Project Name:		dard (7 Days)	0 50,0				Col	000	200	Only)		(le)		s 808	sides	les 81				4A				
Capital Industries Project Manager:	Stand	dard (7 Days)		ers			Courage Of So / Pio	5	9S 826	ers O	NIS/M	w-lev		ticide	Pestic	rbicio) 1664A				
See Masse				ntain		EX	Acio	200	olatile	(Wat	3270C PAHs	IM (Ic		e Pes	orus	id He	etals	etals		rease	*			
Sampled by: Ryain Ostrom		(other)		of Co	HCID	-Gx/B	ž Ž	D VO	ated V	A 8011	atiles (3/Q02/3	382A	chlorin	hosph	ted Ac	RA M	CAM	etals	and g	3			au
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	ochitelo/	volatiles 6260C Halogenated Volatiles 8260C	EDB EPA 8011 (Waters	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 82	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease)	CVOC			% Moisture
11 E5-03-3.0-082318	8/23/18		5	5																	X			X
12 E5-03-9.0-082318		2005	1	5	П																X	1	+	ī
13 E5-03 - 14.0-082318		2015		5																	X		1	\dagger
14 E5-03-19.0-082318		2025		5																	X			T
15 B3-01-9.0-082318		2145		5				1													V			\parallel
16 83-01-11.0-082318		2200		5				1													X			1
17-33-02-20 082318 RO																						\top		
B" 33-02-6.0-082318		2215		5																	X			X
18 B3-03-8.0-082318		2245		5																				
B30-63-8.0-08738	1	2250	V	5																				
Signature	Co	ompany				Date	- Commission	10000	Time				ts/Sp											
Relinquished The Mory		Famillo	n cons	ulhi	v	81	20/1	1	113	d	*	Se	e	Pa	ge	1	_ +	00	- A.	nal	ays	es		
Received		00	VE			8	24/1	2	174												1			
Relinquished		000				oje	7 170	0	() •															
Received								\top													J			
Relinquished																								
Received											Data	a Pac	kage	: Sta	ndar	d	Lev	vel III		Leve	I IV []		
Reviewed/Date		Reviewed/Da	te								Chro	omato	ogram	ns wit	h fina	al rep	ort [Ele	ctroni	ic Data	a Deliv	erables (EDDs) [

OnSite Environmental Inc.

Chain of Custody

Page 3 of 3

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		rnaround Requ n working day			La	abo	rato	ry N	lumb	oer:	0	8 -	2	9 1									
Phone: (425) 883-3881 • www.onsite-env.com Company: Froject Number: 157-008 Project Name: Capital Industries Project Manager: Jen Moore Sampled by: From Outron	Sam 2 Da	_	1 Day	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NVITH DX (Acid / SG Clear - Up)	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level)		Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	erbicides 8151A	Total RCRA Metals	Total MTCA Metals	Aetals	HEM (oil and grease) 1664A	C5*			ture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTP	NWTP	NWTPH-GX	Volatile	Haloge	EDB EI	Semivo (with lo PAHs 8	PCBs 8082A	Organo	Organo	Chlorin	Total R	Total M	TCLP Metals	HEM (c	CVOC			% Moisture
20 83-03-11.0-082318	812318	2255	S	5																X			X
121 D4-01-1.0-082318		2320		5																X			1
21 DH-01-5.0-08318		2330		5																X			
23 D4-01-10,0-082318	V	23/5	V	5																X			1
All																							
Relinquished Received Received Received		Company Coste	onsulti	Y		St.	history assessment	100	1139 174	e !O	* S					100000000000000000000000000000000000000	or	Ac	naly	AR	5,		
Received								+															
Received								+			Data P	ackag	e: Sta	andaı	rd 📝	Lev	/el III		Leve	I IV 🗆			\dashv
Reviewed/Date		Reviewed/Dat	е								Chrom											(EDDs)	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 4, 2018

Jennifer Moore Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 457-008

Laboratory Reference No. 1808-291B

Dear Jen:

Enclosed are the analytical results and associated quality control data for samples submitted on August 24, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 457-008

Case Narrative

Samples were collected on August 23, 2018 and received by the laboratory on August 24, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B3-03-8.0-082318					
Laboratory ID:	08-291-18					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-31-18	8-31-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-31-18	8-31-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-31-18	8-31-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-31-18	8-31-18	
Trichloroethene	0.0017	0.0010	EPA 8260C	8-31-18	8-31-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-31-18	8-31-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	92	68-139				
Toluene-d8	101	79-128				
4-Bromofluorobenzene	103	71-132				

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B30-03-8.0-082318					
Laboratory ID:	08-291-19					
Vinyl Chloride	ND	0.0011	EPA 8260C	8-31-18	8-31-18	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	8-31-18	8-31-18	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-31-18	8-31-18	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-31-18	8-31-18	
Trichloroethene	0.0042	0.0011	EPA 8260C	8-31-18	8-31-18	
Tetrachloroethene	ND	0.0011	EPA 8260C	8-31-18	8-31-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	68-139				
Toluene-d8	102	79-128				
4-Bromofluorobenzene	105	71-132				

Project: 457-008

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0831S1					
		0.0040	EDA 00000	0.04.40	0.04.40	
Vinyl Chloride	ND	0.0010	EPA 8260C	8-31-18	8-31-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-31-18	8-31-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-31-18	8-31-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-31-18	8-31-18	
Trichloroethene	ND	0.0010	EPA 8260C	8-31-18	8-31-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-31-18	8-31-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	68-139				
Toluene-d8	102	79-128				
4-Bromofluorobenzene	106	71-132				

Date of Report: September 4, 2018 Samples Submitted: August 24, 2018 Laboratory Reference: 1808-291B

Project: 457-008

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	31S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0542	0.0524	0.0500	0.0500	108	105	53-141	3	17	
Benzene	0.0616	0.0608	0.0500	0.0500	123	122	70-130	1	15	
Trichloroethene	0.0593	0.0598	0.0500	0.0500	119	120	74-122	1	16	
Toluene	0.0604	0.0622	0.0500	0.0500	121	124	76-130	3	15	
Chlorobenzene	0.0538	0.0535	0.0500	0.0500	108	107	75-120	1	14	
Surrogate:										
Dibromofluoromethane					98	100	68-139			
Toluene-d8					102	108	79-128			
4-Bromofluorobenzene					108	112	71-132			

Date of Report: September 4, 2018 Samples Submitted: August 24, 2018 Laboratory Reference: 1808-291B

Project: 457-008

% MOISTURE

Date Analyzed: 8-31-18

Client ID	Lab ID	% Moisture
B3-03-8.0-082318	08-291-18	18
B30-03-8.0-082318	08-291-19	19

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Pag	
age 1	
of	
C	

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished G.L. Mon	Signature	10 65-02-20.0-082318	9 85-02-14.0-082318	8 65-02-50-082318	7 65-02-1.0-082318	6 E5-01-11.0-082318	5 \$5-01-5,0-082318	4 65-01-1.0-082318	3 83-03-2.0-082318	2 B3-02-2,0-082318	1 83-01-2.0-082318	Lab ID Sample Identification	2	Jen Moore	Capital Industries	457-008	Company. Farallon	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052
Re						2/	Company	-		ā	_	- 13				_	812318	Date Sampled S			Standard (7 Days)	2 Days	Same Day	(0)	Turnar (in w
Reviewed/Date					380	rallen Co	oany	1940 V	1915	1885	1840	1825	1805	1755	1730	1720	1650 S	Time Sampled Matrix	(other)		d (7 Days)	3 Days	ay 🔲 1 Day	(Check One)	Turnaround Request (in working days)
						-Sweety		Ct	U	S	N	N	И	N	N	N	U	Numb	per of C		ers	0,			
					SHYGK	श्रीमीप	Date Ti											NWTF NWTF	PH-Gx/E PH-Gx	BTEX Acid	/ SG Cle	ean-up)			Laboratory Nu
					1740	1136	Time														s 8260C ers Only)	v			umber:
Chromatog	Data Package:	(8	1,1-DC	"	* Caly	Comments											(with I	ow-leve 8270D/S	PAHs)			a		- 80
Chromatograms with final report	age: Standard		bded 8/	-DCE; Vinyl Chloride	ME; TCE; GS-1,2-OC	y Analyze	Comments/Special Instructions		0-									Organ	ochlorir		cides 80 Pesticide		D/SIM		-291
ıal repor	A		13018.	y	5-1,2	y2e	ructions												nated A		bicides	8151A			
	Level III		90	Mor	2-00	37													MTCA N						
ectronic			8	de	Tu	the													Metals (oil and	arosco)	16644				
Electronic Data Deliverables (F	Level IV		2 day TA		trans-1,2:	Following:		\times	X	X	X	×	×	X	×	×	×		OC's		1664A				(A)
(EDDs)			E	5 × ×	1,2-DCE;	in:		-								_	×	% Moi	isture						

Chain of Custody

Page 2 of 3

DDs)	Electronic Data Deliverables (EDDs)		Chromatograms with final report	ith fina	ms wi	atogra	Chroma							1/Date	Reviewed/Date				I/Date	Reviewed/Date	m
	☐ Level IV ☐	Level III	Y	Standard		ackag	Data Package:													Received	771
																			hed	Relinquished	- 771
												-								Received	77
																			hed	Relinquished	-
								0	1740	81/1	S.			38	0		V	X-	0	Received	71
	Analoyses	कु	1>	Page	(TO	6	* Sec	6	1136	R	Sw	-2	consultin	-	Famillo			of R. Moon	hed	Relinquished	т
			uctions	Instru	pecial	Comments/Special Instructions	Comm		Time		Date				Company	0		Signature			
(X)	8												N	<	2250	4		B30-03-8.0-0838	30-03-8	S (N	-00
\bigcirc	8												7	U	2245			B3-03-8.0-082318	3-03-8.1	(T)	7
×	×												5	01	2215			815280-0.9-20-68	3-02-6	8	8
		-				+	-		-				-			#		\$ 082318 RO	B3-02-20	4	1
	X												N	G	2200			82501-11.0-082318	11-10-6	6 B	=
	X												C	01	21/2			1.0-082318	83-01-9.0	N CD	
	X												V		2025			19.0-082318	E5-03-10	-	-
	×.												Ur		2015			14.0-082318	ES-03-	To to	,-
	×												S	-	2005			9.0-082318	E5-03-	-	-
×	×												O	C	8 1950	8/23/18		E5-03-3.0-082318	5-03-	=	_
% Moi				Organ	Organ		(with I				NWTP			ed Matrix	Time Sampled	Date Sampled		Sample Identification	Sa	Lab ID	Lal
sture		MTCA I	nated A	ophosi	ochlori	8082A	ow-lev		es 826 enated		H-Gx/	PH-HCI	er of f	ner)	(other)			Strom	5	TY2	Ď
	grease			ohorus	ne Pes		s 8270D el PAHs /SIM (lo			_	BTEX		Contain						Moore	SH	9 :
) 1664A		rbicides	Pesticide	ticides 8			ers Only	es 8260C	I / SG CI			ers	ıys)	Standard (7 Days)	Star Star		ndestries	2	Capite Project Manager	ק ד
			8151A	es 827	081B					ean-up			iys	3 Days	зуs	2 Days		800	457-0		
				DD/SIN)			~	☐ 1 Day	Same Day	San			Faalou	Project Number:	P
		_				-						1)ne)	(Check One)		Jm	Phone: (425) 883-3881 • www.onsite-env.com	Phone: (42)	Company:	0
				-	29	00	30	ber:	Num	tory	Laboratory Number:			days)	(in working days)		25	Analytical Laboratory lesting Services 14648 NE 95th Street • Redmond, WA 98052	14648 NE S		

Environmental Inc. Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98

Chain of Custody

Page 3 of 3

													N										
Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished FTL-More	Signature		Levy .	No()		3 D4-01-10,0-082318	2 D4-01-50-08318	121 D4-01-1.0-082318	20 83-03-11.0-082318	Lab ID Sample Identification	Sampled by:	nager:	Project Name: Cap: Hal Industries	Holeci number:	Faraba	1	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052
Reviewed/Date				(220	Familian Consultin	Company					V 23/15 V	2530	2320	812318 2255 S	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)
					OH! 8/12/8	SIMIR	Date Time					5	V	5	S	NWTP NWTP NWTP Volatil	PH-HCID PH-Gx/BTE PH-Gx PH-Gx PH-Gx PH-Gx PH-Gx PH-Gx PH-Dx (:X Acid / S	SG Cle	an-up)			Laboratory Number:
Chromatograms with final report ☐ Electronic Data Deliverables (EDDs)	Data Package: Standard / Level III Level IV				(* See Paye 1 For Analyses.	Comments/Special Instructions					<u> </u>			\textstyle	Semiv (with to PAHs and PCBs Organic Chlorial Total No. TCLP)	PA 8011 (I olatiles 82 ow-level P/ 8270D/SIM 8082A ochlorine F ophosphor nated Acid RCRA Meta MTCA Meta Metals oil and gre	770D/SI AHs) I (low-life life life life life life life life	level) des 80 sticides	s 8270I	D/SIM		per: 08 - 29 1
s)												0,4			X	% Mois	sture					-	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 30, 2018

Jennifer Moore Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 457-008

Laboratory Reference No. 1808-306

Dear Jen:

Enclosed are the analytical results and associated quality control data for samples submitted on August 27, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely.

David Baumeister Project Manager

Enclosures

Project: 457-008

Case Narrative

Samples were collected on August 24, 2018 and received by the laboratory on August 27, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D4-02-1.0-082418					
Laboratory ID:	08-306-01					
Vinyl Chloride	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	0.0038	0.00093	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	0.0017	0.00093	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-139				
Toluene-d8	110	79-128				
4-Bromofluorobenzene	110	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D4-02-6.5-082418					
Laboratory ID:	08-306-02					
Vinyl Chloride	ND	0.00085	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.00085	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.00085	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.00085	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	0.012	0.00085	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	0.0090	0.00085	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-139				
Toluene-d8	112	<i>79-128</i>				
4-Bromofluorobenzene	108	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D4-02-11.0-082418					
Laboratory ID:	08-306-03					
Vinyl Chloride	ND	0.0011	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	0.0026	0.0011	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	0.0012	0.0011	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	68-139				
Toluene-d8	112	79-128				
4-Bromofluorobenzene	108	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D4-03-1.0-082418					
Laboratory ID:	08-306-04					
Vinyl Chloride	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	0.011	0.00093	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	0.0031	0.00093	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	68-139				
Toluene-d8	109	79-128				
4-Bromofluorobenzene	110	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D4-03-7.0-082418					
Laboratory ID:	08-306-05					
Vinyl Chloride	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	0.011	0.00093	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	0.0054	0.00093	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-139				
Toluene-d8	109	79-128				
4-Bromofluorobenzene	106	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D4-03-11.0-082418					
Laboratory ID:	08-306-06					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	0.0094	0.0010	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	0.0079	0.0010	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	68-139				
Toluene-d8	108	79-128				
4-Bromofluorobenzene	110	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Laboratory ID: Vinyl Chloride 1,1-Dichloroethene (trans) 1,2-Dichloroethene (cis) 1,2-Dichloroethene Trichloroethene Tetrachloroethene Surrogate: Dibromofluoromethane	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C5-01-1.0-082418					
Laboratory ID:	08-306-07					
Vinyl Chloride	ND	0.0012	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.0012	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	ND	0.0012	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	ND	0.0012	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	68-139				
Toluene-d8	110	<i>79-128</i>				
4-Bromofluorobenzene	108	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C5-01-6.0-082418					
Laboratory ID:	08-306-08					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	0.0012	0.0010	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	0.0014	0.0010	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-139				
Toluene-d8	111	79-128				
4-Bromofluorobenzene	106	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Laboratory ID: Vinyl Chloride I,1-Dichloroethene trans) 1,2-Dichloroethene cis) 1,2-Dichloroethene Frichloroethene Fetrachloroethene Surrogate: Dibromofluoromethane Toluene-d8	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C5-01-11.0-082418					
Laboratory ID:	08-306-09					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	68-139				
Toluene-d8	112	79-128				
4-Bromofluorobenzene	111	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Laboratory ID: /inyl Chloride 1,1-Dichloroethene trans) 1,2-Dichloroethene cis) 1,2-Dichloroethene Trichloroethene Tetrachloroethene Surrogate: Dibromofluoromethane Toluene-d8	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C5-02-1.0-082418					
Laboratory ID:	08-306-10					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	0.024	0.0010	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	0.012	0.0010	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	68-139				
Toluene-d8	111	<i>79-128</i>				
4-Bromofluorobenzene	107	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C5-03-1.0-082418					_
Laboratory ID:	08-306-11					
Vinyl Chloride	ND	0.00097	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.00097	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.00097	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.00097	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	0.0056	0.00097	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	0.0028	0.00097	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-139				
Toluene-d8	113	79-128				
4-Bromofluorobenzene	111	71-132				

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C50-03-1.0-082418					
Laboratory ID:	08-306-12					
Vinyl Chloride	ND	0.0011	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	0.0081	0.0011	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	0.0039	0.0011	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-139				
Toluene-d8	111	79-128				
4-Bromofluorobenzene	112	71-132				

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0829S1					
Vinyl Chloride	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
Trichloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	8-29-18	8-29-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	68-139				
Toluene-d8	110	79-128				
4-Bromofluorobenzene	109	71-132				

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	Percent			RPD		
Analyte	Result		Spike	Spike Level		overy	Limits	RPD	Limit	Flags	
SPIKE BLANKS											
Laboratory ID:	SB08	29S1									
	SB	SBD	SB	SBD	SB	SBD					
1,1-Dichloroethene	0.0544	0.0551	0.0500	0.0500	109	110	53-141	1	17		
Benzene	0.0524	0.0522	0.0500	0.0500	105	104	70-130	0	15		
Trichloroethene	0.0531	0.0512	0.0500	0.0500	106	102	74-122	4 16			
Toluene	0.0551	0.0549	0.0500	0.0500	110	110	76-130	0	15		
Chlorobenzene	0.0501	0.0508	0.0500	0.0500	100	102	75-120	1	14		
Surrogate:											
Dibromofluoromethane					99	100	68-139				
Toluene-d8					110	110	79-128				
4-Bromofluorobenzene					110	108	71-132				

% MOISTURE

Date Analyzed: 8-29-18

Client ID	Lab ID	% Moisture
D4-02-1.0-082418	08-306-01	8
D4-02-6.5-082418	08-306-02	12
D4-02-11.0-082418	08-306-03	19
D4-03-1.0-082418	08-306-04	8
D4-03-7.0-082418	08-306-05	21
D4-03-11.0-082418	08-306-06	18
C5-01-1.0-082418	08-306-07	29
C5-01-6.0-082418	08-306-08	23
C5-01-11.0-082418	08-306-09	22
C5-02-1.0-082418	08-306-10	21
C5-03-1.0-082418	08-306-11	7
C50-03-1.0-082418	08-306-12	22

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

		No.	
14648 NE 95th Street • Redmond, WA	Analytical Laboratory Testing Services	OnSite Environmental Inc	

Chain of Custody

age
<u></u>
N

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Umoun	Signature	10 C5-02-1.0-082418	81hzso-011-10-50 b	8 (5-01-6.0-082418	7 65-61-1.0-082418	6 D4-03-11-0-082418	5 D4-03-7:0-082418	4 D4-03-1.0-682418	3 174-02-11.0-082418	2 04-02-6.5-082418	1 D4-02-1-0-082418	Lab ID Sample Identification	2	Jen Misse	Project Name: Capital Industries	157-008	Company: Faraller		14648 NE 95th Street • Redmond, WA 98052
neviewed/pare					280) 5	tanaday	Company	√ 1830 √ 5	1820	1810	1800	1705	7645 5	1630 5	1625 5	1620 5	8/24/18 1605 S 5	Date Time Sampled Sampled Matrix	(other)	Contain	Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	(in working days)
190					Skumets	8/27/8 1735	Date Time											NWTI NWTI NWTI Volati Halog	iles 826 genated	BTEX Acid OC Volatil	d / SG C es 82600 ters Only	0)		במטטומנטוץ ואמוווטפו.
Chromatograms with initial report Electronic para penyerabies (Epos)	evel III Level IV			1, - 1/ce, Viny Caloride	=) (-5-1)			\rightarrow			1							Semi (with PAHs PCBs Orga Orga Chlor Total TCLF HEM	volatile: low-lev 8 8270D 8 8082A nochlor nophos rinated RCRA MTCA	s 8270ld (left PAH) (l	D/SIM s) ow-level; sticides 8 s Pesticides erbicides	3081B les 827			0000

Chain of Custody

Page 2 of 2

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Relinquished	Signature		Man	1 10		12 (50-03-1:0-082418	11 05-03-1.0-082418	Lab ID Sample Identification	Ryan Ostron	Jen Moore	Capital Industries	Project Number: 457-cc8	Company: tavallow	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
							0					<u></u>	81/42/18	Date Sampled	[Star (TPH	2 Days	Same Day	Tu ()
Reviewed/Date					as 2	tracular	Company					1900	1855	Time Sampled	(other)		Standard (7 Days) (TPH analysis 5 Days)	ays	le Day	(Chack One)
to I					11,	7						5	S	Matrix				3 Days] 1 Day	est s)
								<u> </u>				01	0		H-HCII	ontain	ers			
				-	Q	00	Date								H-Gx/E					ab
					Co	75	e							NWTF	H-Gx					orat
					8	8								NWTF	PH-Dx (_ Acid	/ SG Cle	ean-up)		Laboratory N
					7	17	Time							Volatil	es 826	OC				Z
					S	(N											s 8260C			umber:
_	_				7	Ñ											ers Only)			*
Chron	Data F					*	Comn							(with I	ow-leve	8270D el PAHs				0
natogr	Data Package:					* 500	nents/								8082A		vv-level)			00
ams v							Specia							Organ	ochlori	ne Pest	icides 80	081B		w
vith fir	Standard				(Peupe	al Inst							Organ	ophosp	horus I	Pesticide	es 8270	D/SIM	00
Chromatograms with final report	lrd 🗆					12	Comments/Special Instructions							Chlori	nated A	Acid He	rbicides	8151A		
ort 🗆	Level						SII							Total F	RCRA N	/letals				
	=					37									MTCA N					
tronic						Da									Metals		1664A			
Data D	Level IV				•	Analyses.						<u> </u>	V		0.	s *				_
Electronic Data Deliverables (EDDs) 🗌						S.							$\overline{}$	CV		**				
bles (E																				_
DDs) [
											A	2	1	% Mo	isture					

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 27, 2018

Jennifer Moore Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 457-008

Laboratory Reference No. 1809-176

Dear Jennifer:

Enclosed are the analytical results and associated quality control data for samples submitted on September 19, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Laboratory Reference: 1809-176

Project: 457-008

Case Narrative

Samples were collected on September 18, 2018 and received by the laboratory on September 19, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Hexavalent Chromium SM 3500-Cr B Analysis

The practical quantitation limit is elevated due to interferences present in the samples.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Laboratory Reference: 1809-176

Project: 457-008

VOLATILE ORGANICS EPA 8260C

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW6-091818					
09-176-01					
ND	0.20	EPA 8260C	9-19-18	9-19-18	
ND	0.20	EPA 8260C	9-19-18	9-19-18	
ND	0.20	EPA 8260C	9-19-18	9-19-18	
5.5	0.20	EPA 8260C	9-19-18	9-19-18	
8.5	0.20	EPA 8260C	9-19-18	9-19-18	
Percent Recovery	Control Limits				
107	75-127				
100	80-127				
95	78-125				
	MW6-091818 09-176-01 ND ND ND 5.5 8.5 Percent Recovery 107 100	MW6-091818 09-176-01 0.20 ND 0.20 ND 0.20 5.5 0.20 8.5 0.20 Percent Recovery Control Limits 107 75-127 100 80-127	MW6-091818 09-176-01 0.20 EPA 8260C ND 0.20 EPA 8260C ND 0.20 EPA 8260C 5.5 0.20 EPA 8260C 8.5 0.20 EPA 8260C Percent Recovery Control Limits 107 75-127 100 80-127	Result PQL Method Prepared MW6-091818 09-176-01 500 500 9-19-18 9-19-18 ND 0.20 600 9-19-18 9-19-	Result PQL Method Prepared Analyzed MW6-091818 09-176-01 9-19-18 9-19-18 ND 0.20 EPA 8260C 9-19-18 9-19-18 ND 0.20 EPA 8260C 9-19-18 9-19-18 ND 0.20 EPA 8260C 9-19-18 9-19-18 5.5 0.20 EPA 8260C 9-19-18 9-19-18 8.5 0.20 EPA 8260C 9-19-18 9-19-18 Percent Recovery Control Limits 107 75-127 100 80-127

Laboratory Reference: 1809-176

Project: 457-008

VOLATILE ORGANICS EPA 8260C

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW60-091818					
09-176-02					
ND	0.20	EPA 8260C	9-19-18	9-19-18	
ND	0.20	EPA 8260C	9-19-18	9-19-18	
ND	0.20	EPA 8260C	9-19-18	9-19-18	
5.1	0.20	EPA 8260C	9-19-18	9-19-18	
8.3	0.20	EPA 8260C	9-19-18	9-19-18	
Percent Recovery	Control Limits				
108	75-127				
99	80-127				
95	78-125				
	MW60-091818 09-176-02 ND ND ND 5.1 8.3 Percent Recovery 108 99	MW60-091818 09-176-02 0.20 ND 0.20 ND 0.20 5.1 0.20 8.3 0.20 Percent Recovery Control Limits 108 75-127 99 80-127	MW60-091818 09-176-02 0.20 EPA 8260C ND 0.20 EPA 8260C ND 0.20 EPA 8260C 5.1 0.20 EPA 8260C 8.3 0.20 EPA 8260C Percent Recovery Control Limits 108 75-127 99 80-127	Result PQL Method Prepared MW60-091818 9-176-02 9-19-18 ND 0.20 EPA 8260C 9-19-18 ND 0.20 EPA 8260C 9-19-18 ND 0.20 EPA 8260C 9-19-18 5.1 0.20 EPA 8260C 9-19-18 8.3 0.20 EPA 8260C 9-19-18 Percent Recovery Control Limits 108 75-127 99 80-127	Result PQL Method Prepared Analyzed MW60-091818 99-176-02 99-19-18 99-19-18 ND 0.20 EPA 8260C 99-19-18 99-19-18 ND 0.20 EPA 8260C 99-19-18 99-19-18 ND 0.20 EPA 8260C 99-19-18 99-19-18 8.3 0.20 EPA 8260C 99-19-18 99-19-18 Percent Recovery Control Limits 108 75-127 75-127 75-127 99 80-127 80-127

Laboratory Reference: 1809-176

Project: 457-008

VOLATILE ORGANICS EPA 8260C

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
OBW-5-091818					
09-176-03					
ND	0.20	EPA 8260C	9-19-18	9-19-18	
ND	0.20	EPA 8260C	9-19-18	9-19-18	
0.61	0.20	EPA 8260C	9-19-18	9-19-18	
4.8	0.20	EPA 8260C	9-19-18	9-19-18	
7.3	0.20	EPA 8260C	9-19-18	9-19-18	
Percent Recovery	Control Limits				
105	75-127				
101	80-127				
98	78-125				
	OBW-5-091818 09-176-03 ND ND 0.61 4.8 7.3 Percent Recovery 105 101	OBW-5-091818 09-176-03 0.20 ND 0.20 ND 0.20 0.61 0.20 4.8 0.20 7.3 0.20 Percent Recovery Control Limits 105 75-127 101 80-127	OBW-5-091818 09-176-03 0.20 EPA 8260C ND 0.20 EPA 8260C 0.61 0.20 EPA 8260C 4.8 0.20 EPA 8260C 7.3 0.20 EPA 8260C Percent Recovery Control Limits 105 75-127 101 80-127	Result PQL Method Prepared OBW-5-091818 9-176-03 9-176-03 ND 0.20 EPA 8260C 9-19-18 ND 0.20 EPA 8260C 9-19-18 0.61 0.20 EPA 8260C 9-19-18 4.8 0.20 EPA 8260C 9-19-18 7.3 0.20 EPA 8260C 9-19-18 Percent Recovery Control Limits 105 75-127 101 80-127	Result PQL Method Prepared Analyzed OBW-5-091818 99-176-03 99-176-03 99-19-18 99-19

Laboratory Reference: 1809-176

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	09-176-04					
Vinyl Chloride	ND	0.20	EPA 8260C	9-19-18	9-19-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-19-18	9-19-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-19-18	9-19-18	
Trichloroethene	ND	0.20	EPA 8260C	9-19-18	9-19-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-19-18	9-19-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	94	78-125				

Laboratory Reference: 1809-176

Project: 457-008

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0919W1					
Vinyl Chloride	ND	0.20	EPA 8260C	9-19-18	9-19-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-19-18	9-19-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-19-18	9-19-18	
Trichloroethene	ND	0.20	EPA 8260C	9-19-18	9-19-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-19-18	9-19-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	113	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	100	78-125				

Laboratory Reference: 1809-176

Project: 457-008

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

	Result				Per	cent	Recovery		RPD		
Analyte			Spike Level		Recovery		Limits	RPD	Limit	Flags	
SPIKE BLANKS											
Laboratory ID:	SB09	19W1									
	SB	SBD	SB	SBD	SB	SBD					
1,1-Dichloroethene	11.2	11.4	10.0	10.0	112	114	62-129	2	15		
Benzene	10.6	11.1	10.0	10.0	106	111	77-127	5	15		
Trichloroethene	9.95	10.1	10.0	10.0	100	101	70-120	1	15		
Toluene	10.2	10.4	10.0	10.0	102	104	82-123	2	15		
Chlorobenzene	9.52	9.67	10.0	10.0	95	97	79-120	2	15		
Surrogate:											
Dibromofluoromethane					111	115	75-127				
Toluene-d8					105	104	80-127				
4-Bromofluorobenzene					102	102	78-125				

Laboratory Reference: 1809-176

Project: 457-008

TOTAL DISSOLVED SOLIDS SM 2540C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-091818					
Laboratory ID:	09-176-01					
Total Dissolved Solids	670	13	SM 2540C	9-20-18	9-21-18	
Client ID:	MW60-091818					
Laboratory ID:	09-176-02					
Total Dissolved Solids	690	13	SM 2540C	9-20-18	9-21-18	
Client ID:	OBW-5-091818					
Laboratory ID:	09-176-03					
Total Dissolved Solids	560	13	SM 2540C	9-20-18	9-21-18	

Laboratory Reference: 1809-176

Project: 457-008

TOTAL DISSOLVED SOLIDS SM 2540C QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0920W1					
Total Dissolved Solids	ND	13	SM 2540C	9-20-18	9-21-18	

Analyte	Result		Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE	1101	Juit	Оріко Дотої	rtoourt	Recovery	Limito	III D		riugo
Laboratory ID:	09-17	76-02							
	ORIG	DUP							
Total Dissolved Solids	687	707	NA	NA	NA	NA	3	17	
SPIKE BLANK									
Laboratory ID:	SB09	20W1							
	S	В	SB		SB				
Total Dissolved Solids	47	72	500	NA	94	86-115	NA	NA	

Laboratory Reference: 1809-176

Project: 457-008

TOTAL METALS EPA 200.8/6010D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-091818					
Laboratory ID:	09-176-01					
Chromium	110	110	EPA 200.8	9-25-18	9-27-18	
Iron	3300	50	EPA 6010D	9-24-18	9-24-18	
Manganese	9500	220	EPA 200.8	9-25-18	9-27-18	
Client ID:	MW60-091818					
Laboratory ID:	09-176-02					
Chromium	460	110	EPA 200.8	9-25-18	9-27-18	
Iron	100000	250	EPA 6010D	9-24-18	9-25-18	
Manganese	280000	11000	EPA 200.8	9-25-18	9-27-18	
Client ID:	OBW-5-091818					
Laboratory ID:	09-176-03					
Chromium	170	110	EPA 200.8	9-25-18	9-27-18	
Iron	1000	50	EPA 6010D	9-24-18	9-24-18	
Manganese	4600	110	EPA 200.8	9-25-18	9-27-18	

Laboratory Reference: 1809-176

Project: 457-008

TOTAL METALS EPA 200.8/6010D QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0924WH1					
Iron	ND	50	EPA 6010D	9-24-18	9-24-18	
Laboratory ID:	MB0925WM1					
Chromium	ND	11	EPA 200.8	9-25-18	9-27-18	
Manganese	ND	11	EPA 200.8	9-25-18	9-27-18	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-19	96-02									
	ORIG	DUP									
Iron	1100	1070	NA	NA			NA	NA	3	20	
Laboratory ID:	08-38	85-04									
Chromium	ND	ND	NA	NA			NA	NA	NA	20	
Manganese	608	618	NA	NA			NA	NA	2	20	
MATRIX SPIKES											
Laboratory ID:	09-19	96-02									
	MS	MSD	MS	MSD		MS	MSD				
Iron	19500	20200	20000	20000	1100	92	96	75-125	4	20	
Laboratory ID:	08-38	85-04									
Chromium	201	202	222	222	ND	91	91	75-125	1	20	
Manganese	809	796	222	222	608	91	85	75-125	2	20	

Laboratory Reference: 1809-176

Project: 457-008

DISSOLVED METALS EPA 200.8/6010D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-091818					
Laboratory ID:	09-176-01					
Chromium	50	10	EPA 200.8	9-19-18	9-26-18	
Iron	ND	56	EPA 6010D	9-19-18	9-24-18	
Manganese	1800	100	EPA 200.8	9-19-18	9-26-18	
Client ID:	MW60-091818					
Laboratory ID:	09-176-02					
Chromium	110	10	EPA 200.8	9-19-18	9-26-18	
Iron	ND	56	EPA 6010D	9-19-18	9-24-18	
Manganese	12	10	EPA 200.8	9-19-18	9-26-18	
Client ID:	OBW-5-091818					
Laboratory ID:	09-176-03					
Chromium	37	10	EPA 200.8	9-19-18	9-26-18	
Iron	250	56	EPA 6010D	9-19-18	9-24-18	
Manganese	4700	100	EPA 200.8	9-19-18	9-26-18	

Laboratory Reference: 1809-176

Project: 457-008

DISSOLVED METALS EPA 200.8/6010D QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0919F1					
Iron	ND	56	EPA 6010D	9-19-18	9-24-18	
Laboratory ID:	MB0919F1					
Chromium	ND	10	EPA 200.8	9-19-18	9-26-18	
Manganese	ND	10	EPA 200.8	9-19-18	9-26-18	

					Source	Pei	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	76-01									
	ORIG	DUP									
Iron	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	09-1	76-02									
Chromium	108	103	NA	NA		1	NA	NA	5	20	
Manganese	11.7	10.7	NA	NA		1	NA	NA	9	20	
MATRIX SPIKES											
Laboratory ID:	09-1	76-01									
	MS	MSD	MS	MSD		MS	MSD				
Iron	25900	24400	22200	22200	ND	117	110	75-125	6	20	
Laboratory ID:	09-1	76-02									
Chromium	438	438	400	400	108	82	82	75-125	0	20	•
Manganese	345	347	400	400	11.7	83	84	75-125	0	20	

Laboratory Reference: 1809-176

Project: 457-008

HEXAVALENT CHROMIUM SM 3500-Cr B

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-091818					
Laboratory ID:	09-176-01					
Hexavalent Chromium	ND	50	SM 3500-Cr B	9-19-18	9-19-18	
Client ID:	MW60-091818					
Laboratory ID:	09-176-02					
Hexavalent Chromium	100	50	SM 3500-Cr B	9-19-18	9-19-18	
Client ID:	OBW-5-091818					
Laboratory ID:	09-176-03					
Hexavalent Chromium	ND	50	SM 3500-Cr B	9-19-18	9-19-18	

Laboratory Reference: 1809-176

Project: 457-008

HEXAVALENT CHROMIUM SM 3500-Cr B QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0919W1					
Hexavalent Chromium	ND	10	SM 3500-Cr B	9-19-18	9-19-18	

					Source	Pei	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-17	76-02									
	ORIG	DUP									
Hexavalent Chromium	99.5	91.0	N	IA	NA	1	NΑ	NA	9	20	
MATRIX SPIKES											
Laboratory ID:	09-17	76-02									
	MS	MSD	MS	MSD		MS	MSD				
Hexavalent Chromium	624	605	500	500	99.5	105	101	75-125	3	20	
SPIKE BLANK											
Laboratory ID:	SB09	19W1									
	S	В	S	B			SB			•	•
Hexavalent Chromium	99	9.1	1	00	NA	(99	85-115	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Working / 17200	Relinquished	Signature		X		4 TRIPBLANK	3 0BW 5-091818	818160-09MM E	1 mw6-091818	Lab ID Sample Identification	sampled by: (Sives) Perfects	Holes Manager Jen Magre	Project Name: Capital halushis	457-208	Company: fmaxlon	Analytical Laboratory lesting services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date					8	formaller	Company				9/18/18 - Water 3	09/18/18 1825 Water 7	09/18/18/1730 abover 7	09/18/18 1709 Water 7	Date Time Sampled Sampled Sampled Sampled Sampled Sampled Matrix	(other)	Contain	Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(in working days)	Chain of Custody
Chroma	Data Pa	Pre	OH.	120	10 58 6	9/16/18 1936 Pleas	Date Time Comme								NWTF NWTF NWTF Volatil Halog EDB E Semiv (with I	PH-HCII PH-Gx/I PH-Gx PH-Dx (les 826 enated enated colatiles ow-lev	D STEX Acid COC Volatile 11 (Wat	s 82600 ers Only))	Laboratory Number: U	
Chromatograms with final report 🔲 Electronic Data D	Data Package: Standard Level III D Level IV	set hypora order 28		Impect Manager.	P	le Confirma to led	Comments/Special Instructions	, \(\frac{1}{2}\)	* Pat 705		×	*			PCBs Organ Organ Chlori Total I Total I TCLP	8082A nochlori nophosp nated / RCRA M MTCA I Metals (oil and	ne Peso bhorus Acid He Metals Metals	Pesticides 8 Pesticides	081B es 827(8151A		9-1/0	J
Electronic Data Deliverables (EDDs)	V		1 time with	Also	1	malyses			CISTERANS-DEE			XXX	× + + +	× + + +	Oissoi Total	1 dis	trsen Solved Olissol	l 501 ved-0	ids 5	10 ** 10-8 1025400 10. My 10.	D 3	11.0

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 28, 2018

Jennifer Moore Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 457-008

Laboratory Reference No. 1809-210

Dear Jen:

Enclosed are the analytical results and associated quality control data for samples submitted on September 20, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Laboratory Reference: 1809-210

Project: 457-008

Case Narrative

Samples were collected on September 19, 2018 and received by the laboratory on September 20, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B3-04-4.0-091918					
Laboratory ID:	09-210-01					
Vinyl Chloride	ND	0.0011	EPA 8260C	9-21-18	9-21-18	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	9-21-18	9-21-18	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	9-21-18	9-21-18	
(cis) 1,2-Dichloroethene	0.0012	0.0011	EPA 8260C	9-21-18	9-21-18	
Trichloroethene	13	0.080	EPA 8260C	9-21-18	9-25-18	
Tetrachloroethene	0.21	0.080	EPA 8260C	9-21-18	9-25-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	68-139				
Toluene-d8	106	79-128				
4-Bromofluorobenzene	99	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
B3-04-10.5-091918					
09-210-02					
ND	0.0010	EPA 8260C	9-21-18	9-21-18	
ND	0.0010	EPA 8260C	9-21-18	9-21-18	
ND	0.0010	EPA 8260C	9-21-18	9-21-18	
ND	0.0010	EPA 8260C	9-21-18	9-21-18	
ND	0.0010	EPA 8260C	9-21-18	9-21-18	
ND	0.0010	EPA 8260C	9-21-18	9-21-18	
Percent Recovery	Control Limits				
102	68-139				
105	79-128				
103	71-132				
	B3-04-10.5-091918 09-210-02 ND ND ND ND ND ND ND ND ND 100 Percent Recovery 102 105	B3-04-10.5-091918 09-210-02 0.0010 ND 0.0010 ND 0.0010 ND 0.0010 ND 0.0010 ND 0.0010 Percent Recovery Control Limits 102 68-139 105 79-128	B3-04-10.5-091918 09-210-02 ND 0.0010 EPA 8260C Percent Recovery Control Limits 102 68-139 105 79-128	Result PQL Method Prepared B3-04-10.5-091918 09-210-02 FPA 8260C 9-21-18 ND 0.0010 EPA 8260C 9-21-18 Percent Recovery Control Limits 102 68-139 105 79-128	Result PQL Method Prepared Analyzed B3-04-10.5-091918 9-210-02 9-210-02 9-21-18 9-21-18 ND 0.0010 EPA 8260C 9-21-18 9-21-18 Percent Recovery Control Limits 102 68-139 105 79-128

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

	Result	PQL	Method	Date	Date	
Analyte				Prepared	Analyzed	Flags
Client ID:	E5-05-8.0-091918					
Laboratory ID:	09-210-03					
Vinyl Chloride	ND	0.0012	EPA 8260C	9-21-18	9-21-18	
1,1-Dichloroethene	ND	0.0012	EPA 8260C	9-21-18	9-21-18	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	9-21-18	9-21-18	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	9-21-18	9-21-18	
Trichloroethene	ND	0.0012	EPA 8260C	9-21-18	9-21-18	
Tetrachloroethene	0.0019	0.0012	EPA 8260C	9-21-18	9-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	68-139				
Toluene-d8	104	79-128				
4-Bromofluorobenzene	104	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E5-06-5.5-091918					
Laboratory ID:	09-210-04					
Vinyl Chloride	ND	0.0011	EPA 8260C	9-21-18	9-21-18	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	9-21-18	9-21-18	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	9-21-18	9-21-18	
(cis) 1,2-Dichloroethene	0.0015	0.0011	EPA 8260C	9-21-18	9-21-18	
Trichloroethene	0.064	0.0011	EPA 8260C	9-21-18	9-21-18	
Tetrachloroethene	0.043	0.0011	EPA 8260C	9-21-18	9-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	68-139				
Toluene-d8	105	79-128				
4-Bromofluorobenzene	104	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
F5-05-7.0-091918					
09-210-05					
ND	0.0013	EPA 8260C	9-21-18	9-21-18	
ND	0.0013	EPA 8260C	9-21-18	9-21-18	
ND	0.0013	EPA 8260C	9-21-18	9-21-18	
ND	0.0013	EPA 8260C	9-21-18	9-21-18	
ND	0.0013	EPA 8260C	9-21-18	9-21-18	
0.0014	0.0013	EPA 8260C	9-21-18	9-21-18	
Percent Recovery	Control Limits				
105	68-139				
105	79-128				
106	71-132				
	F5-05-7.0-091918 09-210-05 ND ND ND ND ND O.0014 Percent Recovery 105 105	F5-05-7.0-091918 09-210-05 0.0013 ND 0.0013 ND 0.0013 ND 0.0013 ND 0.0013 ND 0.0013 Percent Recovery Control Limits 105 68-139 105 79-128	F5-05-7.0-091918 09-210-05 0.0013 EPA 8260C ND 0.0013 EPA 8260C ND 0.0013 EPA 8260C ND 0.0013 EPA 8260C ND 0.0013 EPA 8260C 0.0014 0.0013 EPA 8260C Percent Recovery Control Limits 105 68-139 105 79-128	Result PQL Method Prepared F5-05-7.0-091918 09-210-05 9-21-005 ND 0.0013 EPA 8260C 9-21-18 0.0014 0.0013 EPA 8260C 9-21-18 Percent Recovery Control Limits 105 68-139 105 79-128	Result PQL Method Prepared Analyzed F5-05-7.0-091918 09-210-05

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F5-04-2.0-091918					
Laboratory ID:	09-210-06					
Vinyl Chloride	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
Trichloroethene	0.13	0.0010	EPA 8260C	9-21-18	9-21-18	
Tetrachloroethene	0.16	0.0010	EPA 8260C	9-21-18	9-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	68-139				
Toluene-d8	104	79-128				
4-Bromofluorobenzene	93	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
F5-04-7.0-091918					
09-210-07					
ND	0.00090	EPA 8260C	9-21-18	9-21-18	
ND	0.00090	EPA 8260C	9-21-18	9-21-18	
ND	0.00090	EPA 8260C	9-21-18	9-21-18	
ND	0.00090	EPA 8260C	9-21-18	9-21-18	
0.0080	0.00090	EPA 8260C	9-21-18	9-21-18	
0.021	0.00090	EPA 8260C	9-21-18	9-21-18	
Percent Recovery	Control Limits				
103	68-139				
105	79-128				
101	71-132				
	F5-04-7.0-091918 09-210-07 ND ND ND ND O.0080 0.021 Percent Recovery 103 105	F5-04-7.0-091918 09-210-07 0.00090 ND 0.00090 ND 0.00090 ND 0.00090 0.0080 0.00090 0.021 0.00090 Percent Recovery Control Limits 103 68-139 105 79-128	F5-04-7.0-091918 09-210-07 0.00090 EPA 8260C ND 0.00090 EPA 8260C ND 0.00090 EPA 8260C ND 0.00090 EPA 8260C 0.0080 0.00090 EPA 8260C 0.021 0.00090 EPA 8260C Percent Recovery Control Limits 103 68-139 105 79-128	Result PQL Method Prepared F5-04-7.0-091918 09-210-07 FPA 8260C 9-21-18 ND 0.00090 EPA 8260C 9-21-18 0.0080 0.00090 EPA 8260C 9-21-18 Percent Recovery Control Limits 103 68-139 105 79-128	Result PQL Method Prepared Analyzed F5-04-7.0-091918 9-21-0-07 9-21-0-07 9-21-18 9-21-18 ND 0.00090 EPA 8260C 9-21-18 9-21-18 0.021 0.00090 EPA 8260C 9-21-18 9-21-18 Percent Recovery Control Limits 103 68-139 68-139 105 79-128 9-128

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

	Result	PQL	Method	Date	Date	
Analyte				Prepared	Analyzed	Flags
Client ID:	P4-16-1.0-091918					
Laboratory ID:	09-210-08					
Vinyl Chloride	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
Trichloroethene	0.032	0.0010	EPA 8260C	9-21-18	9-21-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	68-139				
Toluene-d8	105	79-128				
4-Bromofluorobenzene	106	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

	Result	PQL	Method	Date	Date	
Analyte				Prepared	Analyzed	Flags
Client ID:	P4-16-2.0-091918					
Laboratory ID:	09-210-09					
Vinyl Chloride	ND	0.00099	EPA 8260C	9-21-18	9-21-18	
1,1-Dichloroethene	ND	0.00099	EPA 8260C	9-21-18	9-21-18	
(trans) 1,2-Dichloroethene	ND	0.00099	EPA 8260C	9-21-18	9-21-18	
(cis) 1,2-Dichloroethene	ND	0.00099	EPA 8260C	9-21-18	9-21-18	
Trichloroethene	0.022	0.00099	EPA 8260C	9-21-18	9-21-18	
Tetrachloroethene	ND	0.00099	EPA 8260C	9-21-18	9-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	68-139				
Toluene-d8	104	79-128				
4-Bromofluorobenzene	101	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	P4-16-3.0-091918					
Laboratory ID:	09-210-10					
Vinyl Chloride	ND	0.00098	EPA 8260C	9-21-18	9-21-18	
1,1-Dichloroethene	ND	0.00098	EPA 8260C	9-21-18	9-21-18	
(trans) 1,2-Dichloroethene	ND	0.00098	EPA 8260C	9-21-18	9-21-18	
(cis) 1,2-Dichloroethene	0.0016	0.00098	EPA 8260C	9-21-18	9-21-18	
Trichloroethene	0.011	0.00098	EPA 8260C	9-21-18	9-21-18	
Tetrachloroethene	ND	0.00098	EPA 8260C	9-21-18	9-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	68-139				
Toluene-d8	105	79-128				
4-Bromofluorobenzene	100	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	P4-17-1.0-091918					
Laboratory ID:	09-210-12					
Vinyl Chloride	ND	0.0012	EPA 8260C	9-21-18	9-21-18	
1,1-Dichloroethene	ND	0.0012	EPA 8260C	9-21-18	9-21-18	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	9-21-18	9-21-18	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	9-21-18	9-21-18	
Trichloroethene	0.0076	0.0012	EPA 8260C	9-21-18	9-21-18	
Tetrachloroethene	ND	0.0012	EPA 8260C	9-21-18	9-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	68-139				
Toluene-d8	103	79-128				
4-Bromofluorobenzene	93	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	P4-17-2.0-091918					
Laboratory ID:	09-210-13					
Vinyl Chloride	ND	0.00093	EPA 8260C	9-21-18	9-21-18	
1,1-Dichloroethene	ND	0.00093	EPA 8260C	9-21-18	9-21-18	
(trans) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	9-21-18	9-21-18	
(cis) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	9-21-18	9-21-18	
Trichloroethene	0.0020	0.00093	EPA 8260C	9-21-18	9-21-18	
Tetrachloroethene	ND	0.00093	EPA 8260C	9-21-18	9-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	68-139				
Toluene-d8	103	79-128				
4-Bromofluorobenzene	99	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

	Result	PQL	Method	Date	Date	Flags
Analyte				Prepared	Analyzed	
Client ID:	P4-17-3.0-091918					
Laboratory ID:	09-210-14					
Vinyl Chloride	ND	0.00090	EPA 8260C	9-21-18	9-21-18	
1,1-Dichloroethene	ND	0.00090	EPA 8260C	9-21-18	9-21-18	
(trans) 1,2-Dichloroethene	ND	0.00090	EPA 8260C	9-21-18	9-21-18	
(cis) 1,2-Dichloroethene	ND	0.00090	EPA 8260C	9-21-18	9-21-18	
Trichloroethene	ND	0.00090	EPA 8260C	9-21-18	9-21-18	
Tetrachloroethene	ND	0.00090	EPA 8260C	9-21-18	9-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	68-139				
Toluene-d8	103	79-128				
4-Bromofluorobenzene	101	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

	Result	PQL	Method	Date	Date	
Analyte				Prepared	Analyzed	Flags
Client ID:	P4-18-1.0-091918					
Laboratory ID:	09-210-16					
Vinyl Chloride	ND	0.00091	EPA 8260C	9-21-18	9-21-18	
1,1-Dichloroethene	ND	0.00091	EPA 8260C	9-21-18	9-21-18	
(trans) 1,2-Dichloroethene	ND	0.00091	EPA 8260C	9-21-18	9-21-18	
(cis) 1,2-Dichloroethene	ND	0.00091	EPA 8260C	9-21-18	9-21-18	
Trichloroethene	0.0058	0.00091	EPA 8260C	9-21-18	9-21-18	
Tetrachloroethene	ND	0.00091	EPA 8260C	9-21-18	9-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	68-139				
Toluene-d8	102	79-128				
4-Bromofluorobenzene	100	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	P4-18-2.0-091918					
Laboratory ID:	09-210-17					
Vinyl Chloride	ND	0.0010	EPA 8260C	9-25-18	9-25-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	9-25-18	9-25-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-25-18	9-25-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-25-18	9-25-18	
Trichloroethene	0.017	0.0010	EPA 8260C	9-25-18	9-25-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	9-25-18	9-25-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	68-139				
Toluene-d8	107	79-128				
4-Bromofluorobenzene	89	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	P4-18-3.0-091918					
Laboratory ID:	09-210-18					
Vinyl Chloride	ND	0.00093	EPA 8260C	9-21-18	9-21-18	
1,1-Dichloroethene	ND	0.00093	EPA 8260C	9-21-18	9-21-18	
(trans) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	9-21-18	9-21-18	
(cis) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	9-21-18	9-21-18	
Trichloroethene	0.0020	0.00093	EPA 8260C	9-21-18	9-21-18	
Tetrachloroethene	ND	0.00093	EPA 8260C	9-21-18	9-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	68-139				
Toluene-d8	101	79-128				
4-Bromofluorobenzene	112	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0921S2					
Vinyl Chloride	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
Trichloroethene	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	9-21-18	9-21-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	68-139				
Toluene-d8	103	79-128				
4-Bromofluorobenzene	102	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0925S2					
Vinyl Chloride	ND	0.0010	EPA 8260C	9-25-18	9-25-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	9-25-18	9-25-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-25-18	9-25-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-25-18	9-25-18	
Trichloroethene	ND	0.0010	EPA 8260C	9-25-18	9-25-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	9-25-18	9-25-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	68-139				
Toluene-d8	107	79-128				
4-Bromofluorobenzene	103	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD		
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags	
SPIKE BLANKS											
Laboratory ID:	SB09	25S2									
	SB	SBD	SB	SBD	SB	SBD					
1,1-Dichloroethene	0.0540	0.0530	0.0500	0.0500	108	106	53-141	2	17		
Benzene	0.0542	0.0538	0.0500	0.0500	108	108	70-130	1	15		
Trichloroethene	0.0510	0.0517	0.0500	0.0500	102	103	74-122	1	16		
Toluene	0.0536	0.0544	0.0500	0.0500	107	109	76-130	1	15		
Chlorobenzene	0.0441	0.0453	0.0500	0.0500	88	91	75-120	3	14		
Surrogate:											
Dibromofluoromethane					106	105	68-139				
Toluene-d8					107	106	79-128				
4-Bromofluorobenzene					102	104	71-132				

Laboratory Reference: 1809-210

Project: 457-008

VOLATILE ORGANICS EPA 8260C MS/MSD QUALITY CONTROL

					Source el Result		cent	Recovery		RPD		
Analyte	Res	sult	Spike	Level			overy	Limits	RPD	Limit	Flags	
MATRIX SPIKES												
Laboratory ID:	09-21	10-14										
	MS	MSD	MS	MSD		MS	MSD					
1,1-Dichloroethene	0.0357	0.0336	0.0348	0.0375	ND	103	90	57-132	6	22		
Benzene	0.0326	0.0371	0.0348	0.0375	ND	94	99	64-125	13	24		
Trichloroethene	0.0298	0.0332	0.0348	0.0375	ND	86	88	58-130	11	21		
Toluene	0.0317	0.0359	0.0348	0.0375	ND	91	96	59-130	12	34		
Chlorobenzene	0.0274	0.0311	0.0348	0.0375	ND	79	83	53-131	13	30		
Surrogate:												
Dibromofluoromethane						105	99	68-139				
Toluene-d8						106	101	79-128				
4-Bromofluorobenzene						101	96	71-132				

Laboratory Reference: 1809-210

Project: 457-008

% MOISTURE

Date Analyzed: 9-21-18

Client ID	Lab ID	% Moisture
B3-04-4.0-091918	09-210-01	28
B3-04-10.5-091918	09-210-02	20
E5-05-8.0-091918	09-210-03	10
E5-06-5.5-091918	09-210-04	22
F5-05-7.0-091918	09-210-05	19
F5-04-2.0-091918	09-210-06	14
F5-04-7.0-091918	09-210-07	21
P4-16-1.0-091918	09-210-08	10
P4-16-2.0-091918	09-210-09	20
P4-16-3.0-091918	09-210-10	23
P4-17-1.0-091918	09-210-12	10
P4-17-2.0-091918	09-210-13	19
P4-17-3.0-091918	09-210-14	21
P4-18-1.0-091918	09-210-16	8
P4-18-2.0-091918	09-210-17	21
P4-18-3.0-091918	09-210-18	19

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page
of
N

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Mana Like Call	Relinquished	Signature	0 P4-16-3-0-091918	0 14-16-20-0198	8 194-16-10-091918	7 F5-04-70-091918	6 F5-04-20-091918	5 F5-05-7.0-091918	4 55-06-5-5-091918	3 E5-05-80-091918	83-04-10.5-091918	B3-04-40-891918	Lab ID Sample Identification	Sampled by: Gres Refuse	Project Manager: Jew Woove	Project Name: Capital holustries	Project Number: 457 -008	2		Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052
Reviewed/Date					350		Company	1 2150 1	SNR	2140	1730	2271	1630	18091	1850	2040	9/19/18 2028 Soil 5	Date Time Sampled Sampled Matrix	(other)	ontaine	Standard (7 Days)		☐ Same Day ☐ 1 Day	(Check One)	Turnaround Request (in working days)
	S101 8/0e/b				1015 Time			NWTPH-Gx/BTEX NWTPH-Gx NWTPH-Dx (☐ Acid / SG Clean-up) Volatiles 8260C Halogenated Volatiles 8260C EDB EPA 8011 (Waters Only)							Laboratory Number:										
Chromatograms with final report ☐ Electronic Data Deliverables (EDDs) ☐	Data Package: Standard Level III Level IV			1,1- KE and Vingl chloride	- Cis	Hze Soundes for:	Comments/Special Instructions	×	×	×	×	>		>	×	>> = = = = = = = = = = = = = = = = = =	×	Semiv (with It PAHs and It P	olatiles ow-leve 8270D/8 8082A ochlorir ophosp nated A RCRA M Metals oil and 9	8270D/I PAHs) I PAHs) SIM (low ne Pestic horus P cid Hert letals letals grease)	SIM /-level) cides 80 esticides bicides 8	081B s 8270I 8151A			09-210

14648 NE 95th Street • Redmond, WA 98052	Analytical Laboratory Testing Services	Environmental Inc.	OnSite	

Chain of Custody

Page 2 of 2

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Deliver Leewin	Relinquished	Signature		10 DU-18- 5.0-13/98	18 19-18 - 30-091918	1) 14-18-2-0-091918	86160-011-81-hd 91	15 P4-17-5:0-09/9/8	14 P4-17-30-09/9/8	13 194-17-20-091918	13 Py-17-10-091918	11 84-16-50-91918	Lab ID Sample Identification	Sampled by:	Project Manager:	Project Name:	Floject Nulliber.	Owigon y.		Milaytical Laboratory Testing Services 14648 NE 95th Street • Bedmond WA 98052
Reviewed/Date					8	tovallu	Company		+ 2270 	mw	215	2210	2250	2247	SMS	2240	9/19/18 2155 Soil	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	(in working days)
				-	2018/012	9219 8100 b	Date Time		N	N	N N	\(\sigma\)	<i>S</i> 7	10	\(\rightarrow\)	<u> </u>	<u> </u>	NWTF NWTF NWTF Volatil	PH-Dx (les 826 enated	D STEX Acid C Volatile	/ SG C	0)		Laboratory Number:
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV				P4-17-30 are for MS/MSD.	The extra Contourers for Sample	Comments/Special Instructions		*		7.	~	×	~	×	***	×	Semix (with I PAHs PCBs Organ Organ Chlori Total I Total I HEM	rolatiles low-level 8270D/ 8082A nochlori nophosp inated // RCRA M MTCA I Metals	s 8270Eel PAHsel	/SIM	8081B les 827(. 09-210
DDs)								+	750				1				X	% Mo							

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 1, 2018

Jennifer Moore Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 457-008

Laboratory Reference No. 1809-225

Dear Jennifer:

Enclosed are the analytical results and associated quality control data for samples submitted on September 21, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 1, 2018

Samples Submitted: September 21, 2018

Laboratory Reference: 1809-225

Project: 457-008

Case Narrative

Samples were collected on September 20, 2018 and received by the laboratory on September 21, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Date of Report: October 1, 2018 Samples Submitted: September 21, 2018

Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	P4-15-1.0-092018					
Laboratory ID:	09-225-01					
Vinyl Chloride	ND	0.00085	EPA 8260C	9-24-18	9-24-18	
1,1-Dichloroethene	ND	0.00085	EPA 8260C	9-24-18	9-24-18	
(trans) 1,2-Dichloroethene	ND	0.00085	EPA 8260C	9-24-18	9-24-18	
(cis) 1,2-Dichloroethene	ND	0.00085	EPA 8260C	9-24-18	9-24-18	
Trichloroethene	0.0015	0.00085	EPA 8260C	9-24-18	9-24-18	
Tetrachloroethene	ND	0.00085	EPA 8260C	9-24-18	9-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	68-139				
Toluene-d8	104	79-128				
4-Bromofluorobenzene	105	71-132				

Samples Submitted: September 21, 2018

Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
P4-15-2.0-092018					
09-225-02					
ND	0.00095	EPA 8260C	9-24-18	9-24-18	
ND	0.00095	EPA 8260C	9-24-18	9-24-18	
ND	0.00095	EPA 8260C	9-24-18	9-24-18	
ND	0.00095	EPA 8260C	9-24-18	9-24-18	
0.0026	0.00095	EPA 8260C	9-24-18	9-24-18	
ND	0.00095	EPA 8260C	9-24-18	9-24-18	
Percent Recovery	Control Limits				
114	68-139				
105	79-128				
102	71-132				
	P4-15-2.0-092018 09-225-02 ND ND ND ND ND O.0026 ND Percent Recovery 114 105	P4-15-2.0-092018 09-225-02 0.00095 ND 0.00095 ND 0.00095 ND 0.00095 0.0026 0.00095 ND 0.00095 Percent Recovery Control Limits 114 68-139 105 79-128	P4-15-2.0-092018 09-225-02 ND 0.00095 EPA 8260C ND 0.00095 EPA 8260C ND 0.00095 EPA 8260C ND 0.00095 EPA 8260C 0.0026 0.00095 EPA 8260C ND 0.00095 EPA 8260C Percent Recovery Control Limits 114 68-139 105 79-128	Result PQL Method Prepared P4-15-2.0-092018 09-225-02 FPA 8260C 9-24-18 ND 0.00095 EPA 8260C 9-24-18 Percent Recovery Control Limits 114 68-139 105 79-128	Result PQL Method Prepared Analyzed P4-15-2.0-092018 9-24-15-2.0-09 9-24-18 9-24-18 ND 0.00095 EPA 8260C 9-24-18 9-24-18 Percent Recovery Control Limits 114 68-139 68-139 105 79-128 79-128

Samples Submitted: September 21, 2018 Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	P4-15-3.0-092018					
Laboratory ID:	09-225-03					
Vinyl Chloride	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
Trichloroethene	0.0052	0.0010	EPA 8260C	9-24-18	9-24-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	68-139				
Toluene-d8	104	79-128				
4-Bromofluorobenzene	105	71-132				

Samples Submitted: September 21, 2018 Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	P4-15-5.0-092018					
Laboratory ID:	09-225-04					
Vinyl Chloride	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
Trichloroethene	0.0099	0.0010	EPA 8260C	9-24-18	9-24-18	
Tetrachloroethene	0.0010	0.0010	EPA 8260C	9-24-18	9-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	68-139				
Toluene-d8	102	79-128				
4-Bromofluorobenzene	103	71-132				

Samples Submitted: September 21, 2018 Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C5-04-2.5-092018					
Laboratory ID:	09-225-05					
Vinyl Chloride	ND	0.00091	EPA 8260C	9-24-18	9-24-18	
1,1-Dichloroethene	ND	0.00091	EPA 8260C	9-24-18	9-24-18	
(trans) 1,2-Dichloroethene	ND	0.00091	EPA 8260C	9-24-18	9-24-18	
(cis) 1,2-Dichloroethene	ND	0.00091	EPA 8260C	9-24-18	9-24-18	
Trichloroethene	0.15	0.00091	EPA 8260C	9-24-18	9-24-18	
Tetrachloroethene	0.099	0.00091	EPA 8260C	9-24-18	9-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	68-139				
Toluene-d8	106	79-128				
4-Bromofluorobenzene	89	71-132				

Samples Submitted: September 21, 2018 Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C5-04-7.5-092018					
Laboratory ID:	09-225-06					
Vinyl Chloride	ND	0.00099	EPA 8260C	9-24-18	9-24-18	
1,1-Dichloroethene	ND	0.00099	EPA 8260C	9-24-18	9-24-18	
(trans) 1,2-Dichloroethene	ND	0.00099	EPA 8260C	9-24-18	9-24-18	
(cis) 1,2-Dichloroethene	ND	0.00099	EPA 8260C	9-24-18	9-24-18	
Trichloroethene	0.0041	0.00099	EPA 8260C	9-24-18	9-24-18	
Tetrachloroethene	0.0025	0.00099	EPA 8260C	9-24-18	9-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	68-139				
Toluene-d8	107	79-128				
4-Bromofluorobenzene	103	71-132				

Samples Submitted: September 21, 2018

Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C5-04-10.5-092018					
Laboratory ID:	09-225-07					
Vinyl Chloride	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
Trichloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	68-139				
Toluene-d8	105	79-128				
4-Bromofluorobenzene	104	71-132				

Samples Submitted: September 21, 2018

Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
C5-05-4.0-092018					
09-225-08					
ND	0.00097	EPA 8260C	9-24-18	9-24-18	
ND	0.00097	EPA 8260C	9-24-18	9-24-18	
ND	0.00097	EPA 8260C	9-24-18	9-24-18	
0.0012	0.00097	EPA 8260C	9-24-18	9-24-18	
0.0013	0.00097	EPA 8260C	9-24-18	9-24-18	
0.0022	0.00097	EPA 8260C	9-24-18	9-24-18	
Percent Recovery	Control Limits				
105	68-139				
104	79-128				
104	71-132				
	C5-05-4.0-092018 09-225-08 ND ND ND 0.0012 0.0013 0.0022 Percent Recovery 105 104	C5-05-4.0-092018 09-225-08 0.00097 ND 0.00097 ND 0.00097 0.0012 0.00097 0.0013 0.00097 0.0022 0.00097 Percent Recovery Control Limits 105 68-139 104 79-128	C5-05-4.0-092018 09-225-08 0.00097 EPA 8260C ND 0.00097 EPA 8260C ND 0.00097 EPA 8260C 0.0012 0.00097 EPA 8260C 0.0013 0.00097 EPA 8260C 0.0022 0.00097 EPA 8260C Percent Recovery Control Limits 105 68-139 104 79-128	Result PQL Method Prepared C5-05-4.0-092018 09-225-08 9-24-18 ND 0.00097 EPA 8260C 9-24-18 ND 0.00097 EPA 8260C 9-24-18 ND 0.00097 EPA 8260C 9-24-18 0.0012 0.00097 EPA 8260C 9-24-18 0.0013 0.00097 EPA 8260C 9-24-18 Percent Recovery Control Limits 105 68-139 104 79-128	Result PQL Method Prepared Analyzed C5-05-4.0-092018

Samples Submitted: September 21, 2018

Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C5-05-6.5-092018					
Laboratory ID:	09-225-09					
Vinyl Chloride	ND	0.00098	EPA 8260C	9-24-18	9-24-18	
1,1-Dichloroethene	ND	0.00098	EPA 8260C	9-24-18	9-24-18	
(trans) 1,2-Dichloroethene	ND	0.00098	EPA 8260C	9-24-18	9-24-18	
(cis) 1,2-Dichloroethene	ND	0.00098	EPA 8260C	9-24-18	9-24-18	
Trichloroethene	0.0013	0.00098	EPA 8260C	9-24-18	9-24-18	
Tetrachloroethene	0.0019	0.00098	EPA 8260C	9-24-18	9-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	68-139				
Toluene-d8	103	79-128				
4-Bromofluorobenzene	101	71-132				

Samples Submitted: September 21, 2018

Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C5-05-10.5-092018					
Laboratory ID:	09-225-10					
Vinyl Chloride	ND	0.0011	EPA 8260C	9-24-18	9-24-18	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	9-24-18	9-24-18	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	9-24-18	9-24-18	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	9-24-18	9-24-18	
Trichloroethene	ND	0.0011	EPA 8260C	9-24-18	9-24-18	
Tetrachloroethene	ND	0.0011	EPA 8260C	9-24-18	9-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	68-139				
Toluene-d8	102	79-128				
4-Bromofluorobenzene	102	71-132				

Date of Report: October 1, 2018 Samples Submitted: September 21, 2018

Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D4-04-2.5-092018					
Laboratory ID:	09-225-11					
Vinyl Chloride	ND	0.0011	EPA 8260C	9-24-18	9-24-18	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	9-24-18	9-24-18	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	9-24-18	9-24-18	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	9-24-18	9-24-18	
Trichloroethene	0.0019	0.0011	EPA 8260C	9-24-18	9-24-18	
Tetrachloroethene	ND	0.0011	EPA 8260C	9-24-18	9-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	68-139				
Toluene-d8	106	79-128				
4-Bromofluorobenzene	103	71-132				

Samples Submitted: September 21, 2018

Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

Analyte		PQL		Date	Date	Flags
	Result		Method	Prepared	Analyzed	
Laboratory ID:	MB0924S2					
Vinyl Chloride	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
Trichloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	9-24-18	9-24-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	68-139				
Toluene-d8	105	79-128				
4-Bromofluorobenzene	104	71-132				

Samples Submitted: September 21, 2018

Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0927S1					
Vinyl Chloride	ND ND	0.0010	EPA 8260C	9-27-18	9-27-18	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	9-27-18	9-27-18	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-27-18	9-27-18	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	9-27-18	9-27-18	
Trichloroethene	ND	0.0010	EPA 8260C	9-27-18	9-27-18	
Tetrachloroethene	ND	0.0010	EPA 8260C	9-27-18	9-27-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	68-139				
Toluene-d8	110	79-128				
4-Bromofluorobenzene	105	71-132				

Samples Submitted: September 21, 2018 Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	24S2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0564	0.0543	0.0500	0.0500	113	109	53-141	4	17	
Benzene	0.0560	0.0537	0.0500	0.0500	112	107	70-130	4	15	
Trichloroethene	0.0519	0.0511	0.0500	0.0500	104	102	74-122	2	16	
Toluene	0.0563	0.0548	0.0500	0.0500	113	110	76-130	3	15	
Chlorobenzene	0.0472	0.0468	0.0500	0.0500	94	94	75-120	1	14	
Surrogate:										
Dibromofluoromethane					104	104	68-139			
Toluene-d8					107	103	79-128			
4-Bromofluorobenzene					104	105	71-132			

Samples Submitted: September 21, 2018 Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	27S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0530	0.0526	0.0500	0.0500	106	105	53-141	1	17	
Benzene	0.0555	0.0547	0.0500	0.0500	111	109	70-130	1	15	
Trichloroethene	0.0509	0.0493	0.0500	0.0500	102	99	74-122	3	16	
Toluene	0.0535	0.0539	0.0500	0.0500	107	108	76-130	1	15	
Chlorobenzene	0.0448	0.0442	0.0500	0.0500	90	88	75-120	1	14	
Surrogate:										
Dibromofluoromethane					106	108	68-139			
Toluene-d8					105	107	79-128			
4-Bromofluorobenzene					105	107	71-132			

Date of Report: October 1, 2018 Samples Submitted: September 21, 2018

Laboratory Reference: 1809-225

Project: 457-008

VOLATILE ORGANICS EPA 8260C MS/MSD QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Resi	ult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-225	5-11									
	MS	MSD	MS	MSD		MS	MSD				
1,1-Dichloroethene	0.0452	0.0399	0.0414	0.0422	ND	109	95	57-132	14	22	
Benzene	0.0454	0.0502	0.0414	0.0422	ND	110	119	64-125	8	24	
Trichloroethene	0.0407	0.0437	0.0414	0.0422	0.0017	94	100	58-130	6	21	
Toluene	0.0428	0.0453	0.0414	0.0422	ND	103	107	59-130	4	34	
Chlorobenzene	0.0349	0.0362	0.0414	0.0422	ND	84	86	53-131	2	30	
Surrogate:											
Dibromofluoromethane						111	117	68-139			
Toluene-d8						106	107	79-128			
4-Bromofluorobenzene						106	103	71-132			

Samples Submitted: September 21, 2018

Laboratory Reference: 1809-225

Project: 457-008

% MOISTURE

Date Analyzed: 9-24-18

Client ID	Lab ID	% Moisture
P4-15-1.0-092018	09-225-01	9
P4-15-2.0-092018	09-225-02	18
P4-15-3.0-092018	09-225-03	21
P4-15-5.0-092018	09-225-04	21
C5-04-2.5-092018	09-225-05	13
C5-04-7.5-092018	09-225-06	21
C5-04-10.5-092018	09-225-07	21
C5-05-4.0-092018	09-225-08	22
C5-05-6.5-092018	09-225-09	20
C5-05-10.5-092018	09-225-10	25
D4-04-2.5-092018	09-225-11	16

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page 1 of 2

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	10 C5-05-10.5-097018 1	8,000-6.9-80-5.9	8 C5-05-410-90018	7 65-04-10-5-092018	6 05-04-25-092018	5 C5-042-5-091018	4 P4-15-50-92018	3 P4-15-30-092019	2 194-15-20-592018	1 P4-15-10-92018 9/2018	Lab ID Sample Identification Sampled	Sampled by: Ores Roskers [-	Project Manager: Jew Meave	Capital Industries	457-608	PHRACION Same	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
Reviewed/Date					780)	arallar.	Company	2010 T 2	2000 5	(950 5	1970 5	1910 5	1905 5	1840 / 5	1835 5	830 5	1825 801 5		(other)	Containe	Standard (7 Days)	s 3 Days	Day 1 Day	(In working days)
					9/21/18 1000	9/w/8 2400	Date Time											NWTF NWTF Volatil Haloge	PH-Gx/PH-Gx PH-Gx PH-Dx (es 826) enated	BTEX	s 82600)	Laboratory Number:
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard ☐ Level III ☐ Level IV ☐	- Vinyl Chloride	ノリノータの	172-0	1 TCC	Please arralyze Samples for the followings	Comments/Special Instructions	×	×			>	×	>	*	×	×	Semiv (with I PAHs PCBs Organ Organ Chlori Total I Total I	rolatiles ow-leve-leve-leve-leve-leve-leve-leve-lev	8270D/ BI PAHs) SIM (lov ne Pesti bhorus F Acid Her Metals	/SIM) w-level) icides 8 Pesticides bicides	081B es 8270 8151A		1. C272

Reviewed/Date	Received	Received Relinquished	Relinquished	Received	Relinquished	Signature				11 D4-04-2.5-09208	Lab ID Sample Identification	Company: Project Number: Project Name: Project Manager: Sampled-by:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date				- (OSE	foundhar	Company				9/20/18 2040 Soil 10	-	Same Day 1 Day 2 Days 3 Days Standard (7 Days) (other)	Turnaround Request (in working days)	Chain of Custody
				9/21/1/1/1020	9/2/18 2300	Date Time					NWTP NWTP Volatile Haloge	PH-HCID PH-Gx/BTEX PH-Gx PH-Dx (Acid / SG Clean-up) es 8260C enated Volatiles 8260C EPA 8011 (Waters Only)	Laboratory Number:	Sustody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV	ylchia	7	Sample 04-04-25-092018 is for	* Note: The extra Containers +	Comments/Special Instructions				**************************************	Semive (with to PAHs & PCBs Organo Chlorin Total F Total M TCLP	rolatiles 8270D/SIM ow-level PAHs) 8270D/SIM (low-level) 8082A ochlorine Pesticides 8081B ophosphorus Pesticides 8270D/SIM nated Acid Herbicides 8151A RCRA Metals MTCA Metals Metals oil and grease) 1664A Control of the part of the pa	r: 09-225	Page 2 of 2

Chain of Custody

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 26, 2018

Jennifer Moore Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 457-008

Laboratory Reference No. 1810-233

Dear Jen:

Enclosed are the analytical results and associated quality control data for samples submitted on October 18, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely.

David Baumeister Project Manager

Enclosures

Date of Report: October 26, 2018 Samples Submitted: October 18, 2018 Laboratory Reference: 1810-233

Project: 457-008

Case Narrative

Samples were collected on October 17, 2018 and received by the laboratory on October 18, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Hexavalent Chromium SM 3500-Cr B Analysis

The practical quantitation limit is elevated due to interferences present in the samples OBW-4-101718 (10-233-01), OBW-5-101718 (10-233-02), MW-6-101718 (10-233-03), and MW60-101718 (10-233-04).

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Date of Report: October 26, 2018 Samples Submitted: October 18, 2018 Laboratory Reference: 1810-233

Project: 457-008

HEXAVALENT CHROMIUM SM 3500-Cr D

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	OBW-4-101718					
Laboratory ID:	10-233-01					
Hexavalent Chromium	ND	50	SM 3500-Cr B	10-18-18	10-18-18	
Client ID:	OBW-5-101718					
Laboratory ID:	10-233-02					
Hexavalent Chromium	ND	50	SM 3500-Cr B	10-18-18	10-18-18	
Client ID:	MW-6-101718					
Laboratory ID:	10-233-03					
Hexavalent Chromium	ND	50	SM 3500-Cr B	10-18-18	10-18-18	
Client ID:	MW60-101718					
Laboratory ID:	10-233-04					
Hexavalent Chromium	ND	50	SM 3500-Cr B	10-18-18	10-18-18	

Date of Report: October 26, 2018 Samples Submitted: October 18, 2018 Laboratory Reference: 1810-233

Project: 457-008

HEXAVALENT CHROMIUM SM 3500-Cr D QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1018W2					
Hexavalent Chromium	ND	10	SM 3500-Cr B	10-18-18	10-18-18	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-23	33-01									
	ORIG	DUP									
Hexavalent Chromium	ND	ND	N	IA	NA		NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	10-23	33-01									
	MS	MSD	MS	MSD		MS	MSD				
Hexavalent Chromium	461	426	500	500	ND	92	85	75-125	8	20	
SPIKE BLANK											
Laboratory ID:	SB10	18W2									
	S	В	S	B			SB				•
Hexavalent Chromium	98	3.4	1	00	NA	•	98	85-115	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page
_
of

Chromatograms with final report ☐ Electronic Data Deliverables (EDDs) ☐		Reviewed/Date	Reviewed/Date
Data Package: Standard ☐ Level III ☐ Level IV ☐			Received
			Relinquished
			Received
Eym hold the -			Relinquished
- Authorities Child	DE D 81/81/01	82	Received Makeo / Secret
Horavalout	SALI MILITOR	braller	Relinquished
Comments/Special Instructions	Date Time	Company	Signature
			(
		\	
		1 625 1	4 mu 60-101718
×		1619	3 MW-6-101718
×		1 1548 1 1	8 108W-5-101718
		lo/17/18/15/4 Water 1	8 M30-4-W30
Semiv (with le PAHs PCBs Organ Organ Chlori Total F Total N	NWTP NWTP NWTP Volatil	Date Time Sampled Sampled Matrix	Lab ID Sample Identification
rolatiles ow-leve 8270D/ 8082A ochlorii ophosp nated A RCRA M MTCA M Metals foil and	PH-HCIE PH-Gx/E PH-Gx PH-Gx PH-Gx PH-Gx PH-Dx ((other)	Sampled by: Breg Herters
8270Dd el PAHss SIM (Iou el Pesta el Pahsse el Pahsse el Pesta el	D BTEX Acid		Project Malager: Ten Mobile
	/ SG Class 8260C	Standard (7 Days) TPH analysis 5 Days)	Project Name: Capital Industries
081B es 8270 8151A			Project Number: 457-008
		Same Day 1 Day	tul
		(Check One)	Phone: (425) 883-3881 • www.onsite-env.com
er: 10-233	Laboratory Number:	Turnaround Request (in working days)	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052